A machine learning-guided adaptive algorithm to reduce the computational cost of atmospheric chemistry in Earth System models: application to GEOS-Chem version 12.0.0 and v12.9.1


Atmospheric composition plays a crucial role in determining the evolution of the atmosphere, but the high computational cost has been the major barrier to include atmospheric chemistry into Earth system models. Here we present an adaptive and efficient algorithm that can remove this barrier. Our approach is inspired by unsupervised machine learning clustering techniques and traditional asymptotic analysis ideas. We first partition species into 13 blocks, using a novel machine learning approach that analyzes the species network structures and their production and loss rates. Building on these blocks, we pre-select 20 submechanisms, as defined by unique assemblages of the species blocks, and then pick locally on the fly which submechanism to use based on local chemical conditions. In each submechanism, we isolate slow species and unimportant reactions from the coupled system. Application to a global 3-D model shows that we can cut the computational costs of the chemical integration by 50 % with accuracy losses smaller than 1 % that do not propagate in time. Tests show that this algorithm is highly chemically coherent making it easily portable to new models without compromising its performance. Our algorithm will significantly ease the computational bottleneck and will facilitate the development of next generation of earth system models.
Last updated on 08/08/2021