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Abstract 

We show that the Landsat and Sentinel-2 satellites can detect NO2 plumes from large point 
sources at 10–60 m pixel resolution in their blue and ultra-blue bands. We use the resulting NO2 
plume imagery to quantify NOx emission rates for several power plants in Saudi Arabia and the 
United States, including a 13-year analysis of 140 Landsat plumes from Riyadh power plant 9 
from 2009 through 2021. NO2 in the plumes initially increases with distance from the source, 
likely reflecting recovery from ozone titration. The fine pixel resolutions of Landsat and Sentinel-2 
enable separation of individual point sources and stacks, including in urban background, and the 
long records enable examination of multidecadal emission trends. Our inferred NOx emission 
rates are consistent with previous estimates to within a precision of about 30%. Sources down to 
~500 kg h-1 can be detected over bright, quasi-homogeneous surfaces. The 2009–2021 data for 
Riyadh power plant 9 show a strong summer peak in emissions, consistent with increased power 
demand for air conditioning, and a marginal slow decrease following the introduction of Saudi 
Arabia’s Ambient Air Standard 2012. 

Significance Statement 

Atmospheric nitrogen oxides (NOx) are air pollutants with important implications for air quality, 
climate, and the biosphere. Satellites have mapped atmospheric NO2 concentrations since the 
1990s, but with spatial resolution generally too coarse to resolve individual point sources such as 
power plants. We show here that the Landsat and Sentinel-2 land-surveying satellites can map 
NO2 plumes at 10–60 m resolution in their visible bands and quantify emissions from individual 
power plants, despite not having been designed for this purpose. Their high spatial resolution 
enables separation of individual point sources and stacks, and their long records, with global 
coverage every few days, enable analysis of multidecadal emission trends. 
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Introduction 
 
Nitrogen oxides (NOx ≡ NO + NO2) play important roles in air quality, radiative forcing, and nitrogen 
deposition to the biosphere. Natural sources of NOx include lightning, soils, and wildfires. 
Anthropogenic emissions are mainly from fossil fuel combustion by vehicles and large stationary 
point sources such as power plants. Dedicated satellite instruments measuring backscattered 
sunlight in the ultraviolet-visible (UV/Vis) spectral range have provided global mapping of 
atmospheric NO2 concentrations since the 1990s to quantify NOx emissions and trends, with pixel 
resolution down to 3.5 × 5.5 km2 for the highest-resolution TROPOMI instrument launched in 2017 
(Veefkind et al., 2012). This is generally too coarse to resolve individual NOx point sources except 
for large, isolated facilities and/or using extensive temporal averaging (Beirle et al., 2019; 2021; 
2023; Georgoulias et al., 2020; Godlowska et al., 2023; Hakkarainen et al., 2023). Here we 
demonstrate the ability of the Landsat and Sentinel-2 satellites to quantify strong NOx point sources 
at 10–60 m pixel resolution with single-pass observations and thus monitor facility-level emissions 
and trends, including in urban background. 

Landsat (Irons et al., 2012) and Sentinel-2 (Drusch et al., 2012) are global land-surveying 
satellite missions for monitoring terrestrial resources and land use. Landsat has provided 
continuous global coverage since the launch of Landsat 1 in 1972, with Landsat 8 (2013–present) 
and Landsat 9 (2021–present) forming the current operational constellation. The Landsat satellites 
are in near-polar sun-synchronous orbit with a 10:00–10:30 equatorial crossing time on the 
descending node. Each carries an Operational Land Imager (OLI) with 185 km swath, 15–30 m 
pixel resolution, and 9 spectral channels ranging from the visible to shortwave infrared. Together, 
Landsat 8 and 9 provide global coverage every 8 days. Sentinel-2 comprises a pair of satellites, 
Sentinel-2A (2015–present) and Sentinel-2B (2017–present), in polar sun-synchronous orbit with 
a ~10:30 equatorial crossing time. Their MultiSpectral Instruments (MSI) observe in 13 spectral 
channels from the visible to shortwave infrared, with 10–60 m spatial resolution across a 290 km 
swath. Together, the Sentinel-2 satellites scan the globe every 5 days. 

Here we show how one can use the blue (B) and ultra-blue (UB) bands of the Landsat OLI 
and Sentinel-2 MSI to map NO2 plumes at 10–60 m pixel resolution and quantify individual NOx 
point sources. The shortwave infrared bands have previously been used to identify methane 
plumes (Varon et al., 2021; Ehret et al., 2022). We focus on large power plants in scenes with 
favorable (bright and/or quasi-homogeneous) surface conditions, but also demonstrate the ability 
to resolve point sources over darker surfaces and against the backdrop of urban NOx emissions. 
We present a long-term record of emissions from a large oil- and gas-fired power plant near Riyadh, 
Saudi Arabia using 140 plumes detected over 13 years from 2009 through 2021. 
 
Results 
 
Figure 1 shows a selection of NO2 plumes from power plants in Saudi Arabia and the United States, 
as observed by Landsat and Sentinel-2. The scenes are generally bright, with surface types ranging 
in complexity from remote desert (Fig. 1b, c) to urban mosaic (Fig. 1a) and semi-arid steppe (Fig. 
1d). The retrievals use different instruments and spectral bands to illustrate the range of options 
available; NO2 sensitivity is highest in the ultra-blue band, but Sentinel-2’s blue band offers finer 
pixel resolution (Materials and Methods). Inventory estimates from the Global Power Emission 
Database (GPED; Tong et al., 2018) and previous TROPOMI-based estimates provide 
independent evaluation of our estimated source rates. We selected the power plants of Figure 1 as 
test cases based on previous reports of strong emissions from GPED and/or remote sensing. 
Strong NOx emissions from power plants in Riyadh (Fig. 1a, b) have been documented by OMI 
(Valin et al., 2013) and TROPOMI (Beirle et al., 2019); the Qurayyah power plants (Fig. 1c) are 
together the highest-emitting Saudi Arabian gas plants in the GPED inventory; and Cusworth et al. 
(2021) previously mapped the CO2 plume from the Bridger power plant (Fig. 1d) on the date we 
examine here using aerial remote sensing.  

Figure 1a shows an NO2 plume from Riyadh power plant 8 (24.597°N, 46.572°E; top-right 
of image) detected by Sentinel-2 on 4 July 2020. Riyadh 8 is a 2.1 gigawatt (GW) natural gas and 
diesel power plant. We estimate a single-pass NOx emission of 1030 kg h-1 for the plant using a 
cross-sectional flux method (Materials and Methods). This is lower than the temporal mean 
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estimates of 2050 kg h-1 from GPED for 2010 and 1690 ± 710 kg h-1 as reported by Beirle et al. 
(2019) from analysis of TROPOMI data for the December 2017 to October 2018 period using the 
divergence method (Materials and Methods). The Sentinel-2 plume is clearly detectable despite 
the surface variability of the urban scene (roads, buildings). 

Figure 1b shows a Sentinel-2 detection of the NO2 plume from Riyadh power plant 9 
(24.950°N, 47.065°E) on 26 June 2021. Riyadh 9 is a 1.7 GW power plant fueled by crude oil, 
natural gas, and diesel. It is located about 50 km east of Riyadh. NOx emissions from the plant are 
large and routinely detectable over its bright and uniform surroundings. The sample observation 
shown in Figure 1b demonstrates the ability of Sentinel-2 to resolve emissions from individual 
power plant exhaust stacks using the blue band with 10-m pixel resolution. For this detection we 
estimate a total NOx emission of 2940 kg h-1 for the plant. We present below the 13-year history of 
Riyadh 9 NOx emissions from 2009-2021 as observed by Landsat 7 and Landsat 8, including 
detailed comparison with previous estimates. 

Figure 1c shows two large NO2 plumes from power plants in the eastern Qurayyah province 
of Saudi Arabia, detected by Landsat 8 on 17 October 2021. Qurayyah I and II are among the 
largest gas-fired power plants in the world at 3.9 GW and 3.8 GW, respectively, and are located 
less than 3 km apart. Landsat can separate the individual plumes, but TROPOMI could not. We 
find single-pass emissions of 1450 kg h-1 for Qurayyah I to the north and 1160 kg h-1 for Qurayyah 
II to the south, similar to the combined GPED estimate of 3310 kg h-1. 

Figure 1d shows an NO2 plume from the 2.4 GW Jim Bridger coal-fired power plant in 
Wyoming, USA, detected by Landsat 8 on 1 August 2020. NOx plumes from US power plants are 
not easily detectable by Landsat and Sentinel-2 due to widespread use of NOx emission controls. 
The Bridger power plant is outfitted with low-NOx burner technology. Of 11 clear-sky Landsat 8 
passes free of condensed water vapor plumes in 2020, we detect only one NO2 plume from the 
power plant, at 11:55 local time on 1 August 2020, under low-wind conditions; the 500-m wind U500 
was 2.0 m s-1 according to the NASA Goddard Earth Observing System Fast Processing (GEOS-
FP) meteorological product (Molod et al., 2012). The US EPA Clean Air Markets Program Database 
(CAMPD) reports NOx emissions of 740 kg h-1 for that hour from the Bridger Continuous Emission 
Monitoring System (CEMS). We estimate 550 kg h-1 from Landsat 8, which may reflect a low bias 
from ozone titration (discussed below). NOx is mainly emitted as NO, and conversion to NO2 in the 
fresh plume from oxidation by ozone may be delayed if ozone is titrated (Sykes et al., 1992). The 
plume starts to be detectable a few hundred meters downwind of the exhaust stacks, likely also 
due to ozone titration. The Bridger case demonstrates that relatively low NOx emissions can be 
detected in complex scenes if winds are low and if a good reference scene for the retrieval is 
available (here 17 August 2020; Materials and Methods). 

Table 1 summarizes the comparisons of our source rate results with previous estimates for 
the five power plants of Figure 1. Our estimates show a mean low bias of 25%, likely reflecting 
delayed NO2 formation in the fresh plume due to ozone titration. The mean absolute deviation 
between estimates is about 30%, and we take this to represent a lower limit on the source rate 
retrieval precision. An error standard deviation of 30% or more is consistent with what one would 
expect from uncertainty in the wind speed (Varon et al., 2018) and NOx/NO2 ratio (Beirle et al., 
2023). 

Figure 2 shows normalized NO2 fluxes as a function of distance downwind from the power 
plant for the five plumes of Figure 1. In all cases, the NO2 cross-sections tend to grow with distance 
downwind, which we attribute to gradual recovery from ozone titration as background ozone is 
entrained into the diluting plume. None of the plumes show an eventual decrease downwind that 
would reflect NOx oxidation, and that may be explained by the short aging times (~10 minutes) 
relative to the lifetime of NOx against oxidation (~1 hour). By contrast, much larger and coarsely 
resolved OMI and TROPOMI plumes show declining NO2 with distance from the source due to NOx 
oxidation (Valin et al., 2013; Laughner and Cohen, 2019). The Riyadh 8 and Qurayyah plumes 
show early recovery from ozone titration followed by steady NO2 fluxes, while the Riyadh 9 and 
Bridger plumes suggest delayed recovery and our source rate estimate would then be a lower limit. 

Figure 3 shows a 13-year history of NOx emissions from Riyadh power plant 9 based on 
2009–2021 Landsat observations. We quantified a total of 140 plumes in cloud-free scenes over 
this period, including 30 from Landsat 7 (2009–2013) and 110 from Landsat 8 (2013–2021). We 
only consider passes for which the GEOS-FP 10-m wind U10 > 2 m s-1 to exclude observations with 
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uncertain wind direction when selecting reference scenes for the retrieval (Materials and Methods). 
Landsat 7 shows sparser detections than Landsat 8 because its retrievals are significantly noisier 
due to an instrument failure in 2003 that led to the loss of about 25% of image pixels. We therefore 
consider Landsat 7 data only before Landsat 8 became operational in March 2013. Plumes were 
clearly detectable in 76% of Landsat 8 passes. Non-detections cannot generally be assumed to 
reflect low or null emissions because the retrieval precision and corresponding detection limit can 
vary strongly from pass to pass with the quality of the best available reference scene. The period-
average values reported below are therefore based only on detected plumes. 

We find that NOx emissions from the power plant averaged 2970 ± 1960 kg h-1 (mean ± 
standard deviation) from 2009–2021. Our mean NOx emission estimate for the year 2010 is 1920 
± 660 kg h-1, higher than the GPED value of 1130 kg h-1. Beirle et al. (2019) reported a mean 
emission of 2230 kg h-1 for December 2017 to October 2018, and we obtain 2750 ± 1090 kg h-1 for 
that period. Beirle et al. (2023) made several improvements to their earlier methods, including better 
estimates of NOx/NO2 ratios (which we implement here) and NOx chemical lifetime, and reported 
an updated mean estimate of 3900 kg h-1 for the year 2018, 40% higher than our 2750 kg h-1 
estimate. This may be due in part to diurnal variability in power generation if emissions are higher 
during afternoon TROPOMI passes (~13:00 local time) than morning Landsat passes (~10:15 local 
time) due to increased air conditioning (AC) power demand. Such diurnal emission variability has 
previously been observed for power plants in the United States (Boersma et al., 2008; Kim et al., 
2009) and Qatar (Rey-Pommier et al., 2023). 

Landsat infers strong seasonal variability in emissions from Riyadh power plant 9, with 
much higher levels during summer than winter, again likely due to AC power demand. Saudi Arabia 
introduced new air quality standards in March 2012 (Ambient Air Standard 2012). Our retrievals 
show that NOx emissions spiked that summer and averaged 3100 kg h-1 through 2021, with a weak 
decreasing trend of –140 [–310, 30] kg h-1 per year (p = 0.08) in the 2013–2021 annual mean based 
on Landsat 8. The 50% increase from the pre-2012 average of 2010 kg h-1 may reflect increased 
power generation at Riyadh power plant 9 to offset decreased generation elsewhere, and the 
gradual post-2012 decline may reflect improvement in pollution control technology. 
 
Discussion  
 
Our work demonstrates the detection and quantification of strong NOx point sources with Landsat 
and Sentinel-2 multispectral satellite observations. We used the instruments’ blue and ultra-blue 
bands to map NO2 plumes from individual power plants at 10–60 m resolution and infer source 
rates, focusing on a few large Saudi Arabian and US facilities. The NO2 plumes we examined 
tended to grow downwind, likely reflecting recovery from ozone titration and demonstrating the 
potential to characterize the chemical dynamics of individual NOx point source plumes from space. 
The source rates we estimated with Sentinel-2 and Landsat are consistent with previous estimates 
to within a precision of about 30%, but biased low by ~25% due to ozone titration in the fresh plume. 
Our 13-year analysis of NO2 plumes from Riyadh power plant 9 illustrates how Landsat (1972–
present) can enable both seasonal and multidecadal monitoring of emissions and trends for 
individual NOx point sources.  
 The limitations of Landsat and Sentinel-2 NO2 retrievals must be recognized. The retrievals 
are most successful over bright homogeneous surfaces. Over these surfaces, a source rate 
detection limit of about 500 kg NO2 h-1 can be inferred from the consistent detection of emissions 
from Riyadh power plant 9, for which our lowest source rate estimate was 350 kg h-1. Identifying a 
good reference scene to remove albedo-related artifacts is more challenging for complex surfaces, 
but we were able to sporadically detect plumes over darker surfaces (Bridger) and an urban mosaic 
(Riyadh 8). Additionally, the retrievals cannot be applied to scenes containing large aerosol plumes, 
such as condensed water vapor in cold conditions or carbon particles in poorly performing 
combustion systems. 

Quality of the reference scenes is presently the main factor limiting our ability to observe 
NO2 plumes with Landsat and Sentinel-2. This could be addressed in the future by applying 
statistical learning to the long data records. Precision in the inferred source rates may be limited by 
uncertainty in wind speed (Varon et al., 2018). Low bias from ozone titration could be addressed 
by tracking the plumes further downwind in adjacent tiles, considering that in all cases of Figure 1 
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the plumes exit the tile before they have dissipated to below the detection limit (Materials and 
Methods). Mining of the Landsat and Sentinel-2 global records would give a better characterization 
of detection limits and enable better comparison to the large TROPOMI point source dataset 
developed by Beirle et al. (2023). It may be possible to extend the Landsat/Sentinel-2 NO2 
capability to other multispectral Earth observation satellites with coarse UV/Vis spectral bands, 
including instruments in low-Earth orbit with up to daily revisits (e.g., Sentinel-3, MODIS) and in 
geostationary orbit with up to 5-minute revisits (e.g., GOES, Himawari-8), though many of these 
instruments have coarser pixel resolution. Hyperspectral surface mapping instruments such as 
EMIT (Green et al., 2020), PRISMA (Cogliati et al., 2021), and EnMAP (Guanter et al., 2015) have 
ultra-blue bands with ~10 nm spectral resolution that should enable better quantification of NOx 
point sources (Joiner et al., 2023), albeit with lower spatiotemporal coverage than Landsat and 
Sentinel-2. 
 
Materials and Methods 
 
The Landsat and Sentinel-2 top of atmosphere data for this study are available through Google 
Earth Engine (https://earthengine.google.com; Gorelick et al., 2017). The GEOS-FP and MERRA-
2 wind data are available through the NASA Climate Data Services portal 
(https://www.nccs.nasa.gov/services/climate-data-services; Molod et al., 2012). The HITRAN line 
spectra are available through the HITRANonline database (https://hitran.org/; Gordon et al., 2017). 
 
Sentinel-2 and Landsat data 
 
Our NO2 retrievals use top-of-atmosphere (TOA) reflectances in the Landsat and Sentinel-2 
visible bands. We retrieve the reflectance data from Google Earth Engine (GEE; Gorelick et al., 
2017) for image tiles of size 6 × 6 km2 to 7.5 × 7.5 km2, centered on a site of interest. The tile size 
is limited by the maximum number of pixels that can be retrieved automatically from GEE. The 
reflectance tiles are delivered along with metadata for acquisition time and viewing/solar zenith 
angles. Landsat OLI and Sentinel-2 MSI provide four visible bands in the ultra-blue (UB, ~430–
450 nm), blue (B, ~450–530 nm), green (G, ~530–590 nm), and red (R, ~640–680 nm). Landsat 
7 and earlier provide only the red, green, and blue (RGB) bands. The Landsat visible bands all 
have 30-m pixel resolution. The Sentinel-2 RGB bands have 10-m pixel resolution, but the UB 
band has 60-m resolution. Our retrievals make use of the B and UB bands to quantify NO2 
column concentrations. The UB band samples stronger NO2 absorption lines (Fig. 4) and falls 
within the spectral range used by TROPOMI and other atmospheric sensors for NO2 retrievals 
(Bucsela et al., 2006; 2013; van Geffen et al., 2022). We use it exclusively for our Landsat 8 
retrievals. We use the B band for Landsat 7, which does not have a UB band, and both bands for 
Sentinel-2 where they have distinct advantages (stronger absorption for UB, but finer pixel 
resolution for B). 

Figure 4 shows optical depths of NO2, water vapor, and ozone in the 300–700 nm UV/Vis 
spectral range, along with Landsat 8 bands 1–4. The optical depths are based on absorption 
cross-sections from Vandaele et al. (1998) for NO2, the HIgh-resolution TRANsmission molecular 
absorption (HITRAN2016) database (Gordon et al., 2017) for water vapor, and Gorshelev et al. 
(2014) and Serdyuchenko et al. (2014) for ozone, applied to vertical concentration profiles from 
the US Standard Atmosphere (Anderson et al., 1986). Most of the information on NO2 absorption 
is contained in bands 1 and 2 (UB and B), which have much higher mean optical depths than the 
other bands (47 times higher in band 1 than in band 4). NO does not have strong absorption 
features in these bands. 
 
NO2 column retrievals 
 
Our retrievals infer NO2 column enhancements (mol m-2) by comparing UB/B reflectances in a 
scene of interest (“target scene”) with a reference either from the R/G bands for that same scene 
or from the UB/B bands for one or more plume-free reference scenes. The presence of an NO2 
plume can then be inferred from differences between target and reference. The reference scene 
should have similar surface features to the target scene but no NO2 enhancements. As described 
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by Varon et al. (2021) for Sentinel-2 methane retrievals, we tried three different approaches to 
defining the reference; the same band on multiple passes (single-band–multi-pass retrieval, 
SBMP), multiple bands on the same pass (multi-band–single-pass retrieval, MBSP), and a 
combination of the two (multi-band–multi-pass retrieval, MBMP). We obtained the best results 
with SBMP retrievals, limiting our attention to the UB and B bands. We focus on those results 
here. 

For a target scene on pass 𝑖 and reference scene on pass 𝑗, we compute the normalized 
reflectance ratio in a band 𝑘 (UB or B) as 
𝑟! =

"!#",!
#$,!

.           (1) 

Here 𝑅 represents the observed top-of-atmosphere reflectance in the band of choice and 𝑐 is a 
scale factor to remove scene-wide reflectance offsets in that band between passes, which could 
arise from surface and/or atmospheric conditions (e.g., temporal variations in surface albedo or 
water vapor absorption) or from changes in the sun-satellite configuration. Following Varon et al. 
(2021), we compute 𝑐 for individual clear-sky scenes by linear regression of all 𝑅$ values onto all 
𝑅% values across the scene. We perform the regression after removing water pixels via the 
Normalized Difference Water Index (NDWI; McFeeters 1996). 

Identifying a suitable reference scene for persistent NOx point sources (e.g., power 
plants) requires knowledge of wind direction. We use 10-m wind direction data for individual 
scenes from the NASA Goddard Earth Observing System Fast Processing (GEOS-FP) product at 
0.25° × 0.3125° resolution for passes after 20 February 2014 (when the GEOS-FP record 
begins), and the GEOS Modern-Era Retrospective Analysis for Research and Applications, 
version 2 (MERRA-2) product at 0.5° × 0.625° resolution for earlier passes. To prevent plume 
overlap between target and reference scenes, which would attenuate retrieved NO2 
enhancements, we require wind direction in the two scenes to differ by at least 60°. Wind 
direction can be highly uncertain under low wind conditions (Varon et al., 2020), hence we only 
consider scenes with 10-m wind speed U10 > 2 m s-1. Ehret et al. (2022) found that Sentinel-2 
methane retrieval artifacts can be reduced by using a linear combination of reference scenes 
rather than just one, so here we select 1–5 references for each target. The number of references 
is selected manually for each retrieval, and the passes themselves are selected automatically to 
maximize similarity with the target, which we evaluate from the root-mean-square error between 
the R band of the target pass and all other passes within a year of it. 

We use the Beer-Lambert law assuming an optically thin plume to infer NO2 slant column 
enhancements ∆Ω (mol m-2) from 𝑟! as 

 
∆Ω = − &'	(*!)

,!
 ,          (2) 

 
where 𝜎! (m2 mol-1) is the band averaged NO2 absorption cross-section in band 𝑘 (blue or ultra-
blue) based on spectroscopic measurements by Vandaele et al. (1998) at 220K. To account for 
higher atmospheric temperatures, we apply a temperature correction to the retrieved columns 
following van Geffen et al. (2022). The correction assumes NO2 plume enhancements are in the 
lowest 1000 m of the atmosphere and is based on the 500 m air temperature from GEOS-FP or 
MERRA-2. 

We convert the retrieved slant columns to vertical columns ∆Ω- (mol m-2) through a 
scattering air mass factor (AMF): 

 
∆Ω- = ∆Ω/AMF.          (3) 
 
The AMF describes the light path as a function of the sun-satellite geometry and the scattering by 
the surface and atmosphere. It is computed as (Palmer et al., 2001): 
 
AMF = AMF. ∫ 𝑤(𝑧)𝑆(𝑧)𝑑𝑧/&012 ,         (4) 
 
where AMF. = sec(𝜃3) + sec(𝜃4) is the geometric AMF that depends only on the solar (𝜃3) and 
viewing (𝜃4) zenith angles; 𝑤(𝑧) is a wavelength-dependent scattering weight that describes the 
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signal attenuation from the atmosphere above height 𝑧 with 𝑤(𝑧) = 1 for a non-scattering 
atmosphere; 𝑆(𝑧) = Δ𝑛(𝑧)/∆Ω- is a normalized vertical shape profile for the NO2 number density 
enhancement Δ𝑛(𝑧); and the integration is over the depth of the NO2 plume. We assume 𝑆(𝑧) for 
the NO2 plume to be a step function for the lowest km of the atmosphere so that the AMF can be 
approximated as 
 
AMF ≈ AMF. 	𝑤(ℎ).          (5) 
 
with ℎ = 500 m. We take 𝑤(ℎ) from a look-up table of scattering weights for the OMI NO2 satellite 
instrument with spectral fitting window of 405–465 nm, as a function of surface pressure, albedo, 
𝜃3, 𝜃4, and the relative azimuth angle (RAA) between sun and satellite (Lamsal et al., 2021). We 
obtain 𝜃3, 𝜃4, and RAA from the satellite metadata. For each Landsat or Sentinel-2 scene, we 
obtain surface pressure from GEOS-FP or MERRA-2, and albedo (Lambertian-equivalent 
reflectance from 405–465 nm) from the nearest 0.25° × 0.25° grid cell of the OMI level-2 daily 
gridded retrieval product (Krotkov et al., 2019). Values of 𝑤(ℎ) range from 0.6 to 1 for our 
collection of scenes. 

The spectral range of the OMI scattering weight look-up table (405–465 nm) contains the 
Landsat/Sentinel-2 UB bands (~435–450 nm) but only partially overlaps the instruments’ B bands 
(~450–520 nm). Using the look-up table in B-band retrievals for Landsat-7 and Sentinel-2 would 
bias the NO2 columns high by underestimating the mean scattering weight and thus 
underestimating AMF. We account for this by using Landsat-8, with 30-m resolution in both B and 
UB bands, to characterize the bias between retrievals in the two bands. In a selection of six 
retrievals from different sites and times of year, we find mean UB:B NO2 ratios of 0.6 to 0.75. We 
take 0.66 as a representative intermediate value, consistent with the expected B:UB ratio of 
Rayleigh scattering weights between the two bands, and correspondingly scale down our B 
retrievals to apply the correction. 

 
Source rate retrieval 

 
Quantification of NOx point sources with satellite observations was previously done by mass 
balance or fitting a Gaussian plume model to time averages of retrieval scenes from OMI (Ghude 
et al., 2013; de Foy et al., 2015) and TROPOMI (Zhang et al., 2019; Fioletov et al., 2022). Beirle 
et al. (2019) introduced a flux-divergence approach to quantify point sources directly from 
TROPOMI NO2 observations and two-dimensional reanalysis winds, and Beirle et al. (2021; 
2023) applied this to construct a global catalog of large NOx point sources. These analyses 
examined very large plumes extending over tens of km and accounted for loss of NOx by 
oxidation within the plume. 

Here we seek to quantify emissions from single-pass satellite observations of turbulent 
NO2 plumes at ≤ 30 m pixel resolution and extending over scenes only a few km across, 
corresponding to a plume aging time of the order of 10 minutes. This requires a different source 
rate retrieval because the instantaneous plumes cannot be assumed Gaussian and because the 
flux divergence approach fails at sub-km scales in absence of direct wind measurements around 
the divergence contour (Varon et al., 2018). Ozone titration in the fresh plume would delay 
conversion of emitted NO to NO2 (Sykes et al., 1992). NOx oxidation is not expected to be 
significant on the short time scales considered here. 

Our approach is to use a cross-sectional flux (CSF) method to quantify the evolution of 
NO2 fluxes in the plume as a function of distance downwind of the source, thus tracking the 
effects of both ozone titration and NOx oxidation. The CSF method (Krings et al., 2013; Varon et 
al., 2018) applied to an NO2 column retrieval field ∆Ω- [mol m-2] computes the NO2 flux 𝐹(𝑥) [kg 
NO2 h-1] at a distance 𝑥 downwind of the source as the product of the cross-plume integral 
column transect 𝐶 [mol m-1] and representative wind speed 𝑈 [m s-1]: 
 
𝐹(𝑥) = 𝑀567		𝑈 ∫ ∆Ω-

8
9 (𝑥, 𝑦)𝑑𝑦 = 𝑀567		𝑈	𝐶,       (6) 
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where 𝑦 is the cross-plume direction perpendicular to the plume axis 𝑥, 𝑀567 = 0.046 kg mol-1 is 
the NO2 molecular weight, and 𝑎 and 𝑏 are plume boundaries defined from a binary plume mask 
distinguishing plume from background. We take 𝑈 to be the 500-m wind speed U500 from GEOS-
FP or MERRA-2. We define the orientation of the cross-plume axis 𝑦 by inspection of the plume, 
from a weighted average of pixel coordinates with the masked NO2 enhancements as weights 
(Varon et al., 2018). We build the binary plume mask by applying a Gaussian filter with a 1–3-
pixel kernel to the retrieved columns and then thresholding at the 75th–90th percentile, similar to 
the approach of Varon et al. (2019) for methane plumes.  

Results presented in Figure 2 show that 𝐹(𝑥) initially increases with distance downwind 
of the source, which we attribute to ozone titration (Sykes et al., 1992). The plumes are too short 
to detect a decrease of 𝐹(𝑥) attributable to NOx oxidation. We take the mean of the five highest 
values of 𝐹(𝑥) along the plume axis (𝐹1:;) as our best estimate of the source rate 𝑄 [kg NOx h-1 
as NO2]: 

 
𝑄 = 𝛼	𝐹1:;,           (7) 
 
where 𝛼 [mol mol-1] is the NOx/NO2 concentration ratio in the plume at the distances downwind 
where 𝐹1:; is calculated. We assume 𝛼 = 1.38 mol mol-1 as representative of the plume air after it 
has recovered from ozone titration (Beirle et al., 2023). The NOx source rate is expressed in 
equivalent kg NO2 to follow standard practice in the emission inventory community.  
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Figures and Tables 
 

 
Figure 1. Sample Sentinel-2 and Landsat 8 retrievals of NO2 plume column enhancements from 
five power plants in Saudi Arabia and the United States. (a) Riyadh power plant 8, Saudi Arabia 
(24.597°N, 46.572°E), based on the 60-m Sentinel-2 UB band. (b) Riyadh power plant 9, Saudi 
Arabia (24.950°N, 47.065°E), based on the 10-m Sentinel-2 B band. (c) Al-Qurrayah power 
plants, Saudi Arabia (25.844°N, 50.126°E). (d) Jim Bridger power plant, Wyoming, USA 
(41.738°N, 108.786°W). The Landsat 8 retrievals (c–d) are at 30-m resolution and based on the 
UB band. The white arrows indicate GEOS-FP 10-m wind direction. Inferred source rates are 
indicated inset. Green dots mark the emitting facilities. The color scale varies between panels. 
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Figure 2. Normalized NO2 flux F(x) with downwind distance x from the power plant for the five 
plumes of Figure 1. The normalization is a min-max rescaling of F(x) to the [0, 1] interval. The 
solid points represent complete plume cross-sections without truncation at the edge of the 
retrieval domain. 
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Figure 3. Time series of single-pass NOx emissions from Riyadh power plant 9 inferred from 13 
years of Landsat 7 and Landsat 8 observations from 2009 through 2021. NO2 plumes are 
detectable on 30 Landsat 7 passes and 110 Landsat 8 passes. The dashed vertical line indicates 
the adoption of the Saudi Arabian Ambient Air Standard 2012. The orange line shows the 90-day 
moving average of a daily interpolation of the single-pass estimates, excluding three outliers in 
January 2014, January 2020, and November 2019. The dashed brown line shows the least-
squares trend in emissions from 2013 through 2021. The yellow shaded regions indicate the local 
summer (June-July-August) months. 
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Figure 4. Slant-column optical depths of NO2, water vapor (H2O), and ozone (O3) in the 300–700 
nm UV/Vis spectral range, based on absorption cross-sections from Vandaele et al. (1998) for 
NO2, HITRAN2016 for H2O, and Gorshelev et al. (2014) and Serdyuchenko et al. (2014) for O3. 
The optical depth calculation is performed for a solar zenith angle of 45° with nadir satellite 
viewing geometry and vertical profiles from the US Standard Atmosphere (Anderson et al., 1986). 
The shaded areas represent Landsat 8 spectral bands B1 (ultra-blue/UB, 435–451 nm), B2 
(blue/B, 452–512 nm), B3 (green/G, 533–590), and B4 (red/R, 636–673 nm). Sentinel-2 has the 
same four bands but with slightly different positions and widths. Landsat 7 and earlier do not have 
the ultra-blue band but have nearly identical RGB bands.  
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Table 1: Comparison with previous NOx emission estimates for the power plants of Figure 1. 

 This work 

Estimate (kg h-1) a 

Previous work 

Estimate (kg h-1) b Source 

Riyadh 8 1030 1690, 2050 Beirle et al. (2019), GPED 

Riyadh 9 2750 ± 1090 2230, 3900 Beirle et al. (2019), Beirle et al. 
(2023) 

Qurayyah I 

Qurayyah II 

1450 

1160 

3310 c GPED 

Bridger 550 740 US EPA (CEMS) CAMPD 
 

a Values are for the instantaneous plumes shown in Figure 1, except for the Riyadh 9 estimate, 
which is based on the Dec. 2017 – Oct. 2018 period of Figure 3. 
b Values reflect different time periods. GPED estimates are for 2010. Estimates by Beirle et al. 
(2019) are for Dec. 2017 to Oct. 2018. Estimates by Beirle et al. (2023) are for 2018. The US 
EPA CEMS estimate is for 11:00 to 12:00 local time on 1 August 2020.  
c Combined emission for both power plants. 


