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Abstract. Satellite observations of atmospheric methane plumes offer a means for global mapping of methane point sources. 

This capability has so far been demonstrated only for anomalously large or regionally aggregated point sources. Here we use 

the GHGSat-D satellite instrument with 50-m spatial resolution and 9-19% single-pass column precision to quantify mean 

source rates for three coal mine vents (San Juan, United States; Appin, Australia; Bulianta, China) under apparently normal 10 

operating conditions and over a 2-year period (2016-2018). This involves averaging wind-rotated observations from 13-24 

overpasses to achieve satisfactory signal-to-noise. Our wind rotation method optimizes the wind direction information for 

individual plumes to account for error in meteorological databases. We derive source rates from the time-averaged plumes 

using integrated mass enhancement (IME) and cross-sectional flux (CSF) methods calibrated with large eddy simulations 

(LES). We find time-averaged source rates ranging from 2150 to 5690 kg h-1 for the three coal mine vents, with about 40% 15 

precision, and generally consistent with previous estimates, which are however highly variable. The IME and CSF methods 

agree within 15%. Our 2300 ± 1020 kg h-1 estimate for the San Juan mine is consistent with the annual mean value of 2585 

kg h-1 for 2017 reported to the United States Greenhouse Gas Reporting Program (GHGRP). Our results demonstrate the 

potential of space-based monitoring for annual reporting of methane emissions from point sources, and suggest that future 

satellite instruments with similar pixel resolution but better precision should be able to constrain a wide range of point 20 

sources.  

INTRODUCTION 

Methane is a powerful greenhouse gas with large anthropogenic sources. It has contributed 1.0 W m-2 to radiative forcing 

since pre-industrial times on an emission basis (IPCC, 2013). Underground coal mine vents are among the largest individual 

point sources of methane (Maasakkers et al., 2016) and are estimated to account for ~10% of global anthropogenic methane 25 

emissions (Saunois et al., 2016), but source reporting is highly uncertain. Remote sensing of atmospheric methane by solar 

backscatter in the shortwave infrared (SWIR) can be effective for quantifying point sources (Jacob et al., 2016; Duren et al., 

2019). Krings et al. (2013) used aircraft remote sensing data to quantify methane emissions from coal mine vents in 

Germany. Frankenberg et al. (2016) conducted an aircraft remote sensing study of coal mine plumes in the Four Corners 
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region of the Southwest United States and found the emissions to be highly variable and intermittent. Global-observing 30 

satellite instruments have demonstrated the capability to characterize methane emissions on regional scales (Turner et al., 

2015; Maasakkers et al., 2019; Miller et al., 2019) and from anomalously large sources (Pandey et al., 2019), but are limited 

by relatively coarse imaging resolution (~10 km). The GHGSat-D satellite instrument overcomes this limitation by 

conducting high-resolution observations of point sources over targeted domains (Varon et al., 2019). Here we demonstrate 

the capability of GHGSat-D to observe methane plumes from individual coal mine vents and infer time-averaged source 35 

rates. 

GHGSat-D was launched in June 2016 as demonstration for a future constellation of small satellites to monitor 

individual methane point sources from space (Brakeboer, 2015; Sloan et al., 2016). Since then, single-pass GHGSat-D 

observations have revealed anomalously high-emitting facilities in oil/gas fields with source rates exceeding 10,000 kg h-1  

(Varon et al., 2019). The largest methane point sources under normal operating conditions are the vents of large underground 40 

coal mines, typically in the range 1000-10,000 kg h-1 (Krings et al., 2013; Frankenberg et al., 2016; Smith et al., 2017; Jacob 

et al., 2016). Here we show that time-averaging of wind-rotated GHGSat-D observations can enable detection and 

quantification of methane emissions from individual coal mine vents, adapting an approach previously applied to satellite 

observations of point sources for CO (Pommier et al., 2013), SO2 (Fioletov et al., 2015; McLinden et al., 2016), NO2 (Valin 

et al., 2013; de Foy et al., 2015; Zhang et al., 2019), and NH3 (Clarisse et al., 2019; Dammers et al., 2019), but including 45 

significant innovation to account for large errors and limited number of observations. Time-averaging is necessary here to 

achieve satisfactory signal-to-noise, but it also has the advantage of smoothing over intermittent sources and providing the 

annual emission estimates most relevant for national emission reporting and global methane budget analyses.  

MATERIALS AND METHODS 

GHGSat-D observations. GHGSat-D uses a miniature Fabry-Perot interferometer with spectral bandpass 1630-50 

1675 nm (McKeever et al., 2017; Varon et al., 2019). The measurements are made at 50-m effective pixel resolution over 

~12×12 km2 targeted domains. Methane column concentrations are retrieved from the resulting spectra using a 100-layer, 

clear-sky radiative transfer model in an inverse modelling framework, following Rodgers (2000) and as described by Varon 

et al. (2019). The inversion retrieves the total column concentrations Ω(𝑥, 𝑦) [mol m-2] of methane across the scene, based on 

HITRAN absorption line spectra (Gordon et al., 2017) and U.S. Standard Atmosphere vertical profiles (NASA 1976). The 55 

column mass enhancement ∆Ω(𝑥, 𝑦) = Ω(𝑥, 𝑦) − Ω𝑏  then characterizes the plume relative to the local background column 

concentration Ω𝑏 [mol m-2] inferred from the scene. The inversion also retrieves albedo, CO2, and water vapor. The work 

presented here includes a correction of retrieval errors from aliased surface properties and other measurement parameters 

(McKeever et al., 2017). 

GHGSat-D has an average revisit time of about two weeks, depending on latitude, and requires clear skies for 60 

successful observation. Since its launch in June 2016, it has repeatedly targeted the vents of three underground coal mines: 

the San Juan mine in New Mexico, USA; the Appin mine in New South Wales, Australia; and the Bulianta mine in Inner 
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Mongolia, China. These coal mines were selected for their large coal production rates and/or previous reports of large 

methane emissions (SACMS 2011; Frankenberg et al., 2016; Ong et al., 2017; Smith et al. 2017). Here we examine 

GHGSat-D observations of the coal mine vents taken between August 2016 and December 2018, totalling 13-24 cloud-free 65 

observations per mine (see Table 1). The Appin mine was closed beginning on 28 June 2017 due to safety concerns and 

partially re-opened on 13 October 2017. We discard the four cloud-free observations made during this extended closure, 

leaving a total of 13 observations for analysis. Several other shorter closures occurred at Appin during the observation 

period, but these did not overlap with our measurements. 

 70 

Figure 1: Instantaneous plumes observed by GHGSat-D over the San Juan mine in New Mexico on (a) November 1st, 2017 and (b) 

September 18th, 2018. The white ‘x’ symbols mark the location of the coal mine vent (36.792N, 108.389W) and the white arrows show 

wind direction inferred from the orientation of the plumes (see text).  

Figure 1 shows methane column enhancements from individual GHGSat-D scenes centred on the San Juan coal 

mine vent. These scenes were chosen for their detectable plumes, but also illustrate GHGSat-D retrieval artefacts resulting 75 

primarily from striping noise, surface reflectance variability, and stray light. Some artefacts are similar in magnitude to the 

plumes, which highlights the importance of prior knowledge of source location. Column precisions for our San Juan, Appin, 

and Bulianta observations are estimated at 9%, 19%, and 12% of background, respectively, based on the standard deviations 

of non-plume column enhancements across the scenes. Most scenes do not feature readily detectable plumes, which 

motivates our time-averaging analysis.  80 

Wind data for time-averaging. Time-averaging of plume observations to improve signal-to-noise and infer 

emissions from point sources requires knowledge of wind speed and direction for the individual scenes (Pommier et al., 

2013; Valin et al., 2013; de Foy et al., 2015; Fioletov et al., 2015; McLinden et al., 2016; Zhang et al., 2019; Clarisse et al., 

2019; Dammers et al., 2019; Hill & Nassar, 2019). Wind information can come from local measurements, from assimilated 
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meteorological databases, or directly from the plume observations themselves (Jongaramrungruang et al., 2019). The 85 

appropriate wind averaging time for an individual scene depends on the lifetime of the detectable plume before turbulent 

diffusion dilutes it to below detectable levels. It  ranges from ~5 minutes for a small plume to ~1 h for a large plume several 

km in extent (Varon et al., 2018). Coal mine vent plumes as observed by GHGSat-D tend to be small (<1 km in scale; Figure 

1) and are therefore best interpreted with an averaging time of about 5 minutes. 

Our algorithm to relate plume concentrations to emissions uses 10-m wind information (Varon et al., 2018). We 90 

take this information from two hourly meteorological databases: (1) the NASA Goddard Earth Observing System – Fast 

Processing (GEOS-FP) reanalysis product with full global coverage at 0.25×0.3125 resolution (Molod et al., 2012), and (2) 

the DarkSky online weather application programming interface (API) with partial coverage (darksky.net/dev). Comparison 

with one month of daytime (15:00-21:00 UTC) wind measurements from 10 U.S. airports in the MesoWest database (Horel 

et al. 2002) suggests that GEOS-FP has more precise wind speed data than DarkSky, while DarkSky has more precise wind 95 

direction data. Error standard deviations on hourly average wind speed and direction from GEOS-FP are 1.5 m s-1 and 49 

degrees relative to the airport measurements, compared to 2.2 m s-1 and 37 degrees for DarkSky. We therefore use GEOS-FP 

winds as default, but substitute DarkSky wind direction where available. DarkSky winds are available for nearly all our 

observations of the San Juan and Appin mines, but not for Bulianta.  

 100 

Figure 2: Error in estimating 10-m wind direction from the GEOS-FP and DarkSky datasets.  (a) Error standard deviations for GEOS-FP 

and DarkSky hourly average wind direction relative to one month of measurements from 10 U.S. airports (ABQ, ATL, BOS, DFW, LAX, 

MCI, MSP, PDX, PHL, and PHX) in the MesoWest database, binned by GEOS-FP wind speed. The airport measurements are for daytime 

June 2017 (15:00–21:00 UTC). (b) Additional uncertainty for estimating 5-minute wind direction from 1-hour averages, based on 5-

minute wind direction variability in the MesoWest data.  105 

Figure 2 shows the wind direction error statistics when using meteorological reanalysis data to infer local wind 

direction as referenced by the MesoWest database. The error depends strongly on wind speed, with larger errors at low wind 

speeds, as would be expected from turbulence. The error on the mean hourly wind in the meteorological databases (Figure 2, 

left panel) is compounded for small plumes by the error in inferring the more appropriate 5-minute average wind (Figure 2, 
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right panel), in which case the two errors are added in quadrature. For observations with strong instantaneous plumes (Figure 110 

1), we estimate wind direction directly from the plume axis, which we define from a weighted mean of pixel coordinates 

with the plume column concentrations as weights. The wind direction error in that case is estimated to be 5 degrees. 

For a given point source, a time-averaged plume over the GHGSat-D record can be constructed from the methane 

column enhancements ∆Ω𝑖(𝑥, 𝑦) [mol m-2] observed over the source domain (𝑥, 𝑦) on individual days 𝑖 = 1 … 𝑁. This is 

done by (1) georeferencing and aligning the observations on a common grid, (2) rotating each observation around the known 115 

source location by the local wind direction 𝜃𝑖 , and (3) computing per-pixel means over the rotated observations. The 

alignment and rotation steps require precise knowledge of the source location at the scale of the observations. The rotation 

step may introduce negative bias from wind direction uncertainty, as a mis-rotated plume may be lost in the noisy 

background of the time-averaged observation. We account for this bias through our source rate retrieval method, as 

described in the “Estimating source rates” section below. 120 

Optimizing wind directions. Wind direction errors in the meteorological databases are relatively large, particularly 

for small plumes under low wind conditions (Figure 2). Here we correct the wind directions used for plume rotation in order 

to maximize concentrations in the time-averaged plume while minimizing deviation from prior wind estimates. Specifically, 

we maximize the joint Gaussian probability distribution 𝑃(𝜽) given by 

log 𝑃(𝜽) = −
(𝑀(𝜽)−𝑀max)2

𝛿2 − (𝜽 − 𝜽𝒂)𝑇𝑆𝑎
−1(𝜽 − 𝜽𝒂)                                                                                                            (1) 125 

by minimizing −log 𝑃(𝜽). Here, 𝜽 is a wind direction vector whose elements 𝜃𝑖, 𝑖 = 1 … 𝑁, are the wind directions used to 

rotate 𝑁 GHGSat-D observations; 𝜽𝒂 is a vector of prior wind direction estimates for the observations, from GEOS-FP and 

DarkSky; 𝑆𝑎 is the (diagonal) prior error covariance matrix describing uncertainty in the prior wind direction, which depends 

on wind speed, plume lifetime (here 5 minutes), and whether the prior is drawn from GEOS-FP, DarkSky, or the plume 

itself; 𝑀(𝜽) [mol] is the total methane mass (integrated mass enhancement, or IME) in a wedge-shaped mask placed 130 

downwind of the source after time-averaging with a set of wind directions 𝜽 (see below); 𝑀max [mol] is the maximum 

possible value of 𝑀(𝜽) for the set of observations when no constraints are placed on 𝜽; and 𝛿2 [mol2] is the error variance in 

𝑀(𝜽)  due to GHGSat-D measurement noise. We minimize − log 𝑃(𝜽)  numerically using the Nelder-Mead simplex 

algorithm (Nelder & Mead, 1965; Lagarias et al., 1998). 

We rotate individual observations by their wind direction such that the rotated wind is by convention from the 135 

north. 𝑀(𝜽) is computed at each iteration of the optimization procedure as the IME over a simple wedge-shaped mask 

extending 500 m south and ±15 degrees of south. The IME is the sum of column enhancements ∆Ω(𝑥, 𝑦) over the mask, 

multiplied by the pixel area. We then compute 𝑀max by rotating the mask around the source location by 360 degrees in each 

observation, recording for each the maximum IME, and averaging over all observations. To calculate 𝛿, we perform time 

averaging using our prior wind directions, and then compute the IME within the wedge-shaped mask when placed at 100 140 

random non-plume locations across the time-averaged domain; the standard deviation of these results gives 𝛿. 
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Defining plume boundaries. Inferring source rates from plume observations requires a mask that distinguishes 

plume pixels from the image background. Varon et al. (2018) suggested a t-test procedure for isolating plumes from 

normally distributed measurement noise, but that procedure’s performance is limited here by systematic errors in the time-

averaged observations. Instead, we isolate the plumes by applying an enhancement threshold at the 98 th percentile of 145 

∆Ω(𝑥, 𝑦) over the time-averaged domain. This defines a threshold mask for the scene. To delete random classification errors 

and reduce loss of plume enhancements at mask edges due to thresholding, we smooth the masks with a 150×150 m2 median 

filter, which replaces each pixel’s value with the median of its 150×150 m2 neighbourhood, followed by a Gaussian filter 

with standard deviation 50 m. Wind rotation and time averaging smooth out most of the observation artefacts such as those 

seen in Figure 1, but some still remain in the mask. For the purpose of inferring point source rates, we only consider the 150 

continuous portion of the mask originating from the source location.  

Estimating source rates. We estimate source rates for our time-averaged plumes using two different methods: the 

IME method and the cross-sectional flux (CSF) method (Varon et al., 2018). The IME method relates the source rate 𝑄 [mol 

s-1] to the detectable plume mass IME [mol] in terms of an effective wind speed 𝑈eff,IME [m s-1] and plume size 𝐿 [m]: 

𝑄 =
𝑈eff,IME 

𝐿
IME =

𝑈eff,IME 

𝐿
∑ ΔΩ(𝑥𝑗 , 𝑦𝑗)𝐴𝑗

𝑛
𝑗=1 ,                                                                                                                       ( 2 ) 155 

where ΔΩ(𝑥𝑗 , 𝑦𝑗 ), 𝑗 = 1 … 𝑛, is the time-averaged column concentration of the 𝑗th plume pixel with coordinates (𝑥𝑗 , 𝑦𝑗 ) and 

area 𝐴𝑗, and the summation is over the n pixels within the continuous plume mask originating from the source location. The 

plume size 𝐿 is defined following Varon et al. (2018) as the square root of the plume mask’s area. The effective wind speed 

𝑈eff,IME is an operational parameter that is inferred from the local 10-m wind speed 𝑈10 in a manner that depends on the 

definitions of the plume mask and size. We discuss the 𝑈eff = 𝑓(𝑈10) relationship below. 160 

The CSF method originally introduced by White (1976) and adapted to column observations by Krings et al. (2011, 

2013) and Varon et al. (2018) relates 𝑄 to a cross-plume concentration integral [mol m-1] and a different effective wind 

speed 𝑈eff,CSF than in the IME method: 

𝑄 = 𝑈eff,CSF ∫ ∆Ω(𝑥, 𝑦)𝑑𝑦
𝑏

𝑎
.                                                                                                                                                    ( 3 ) 

Here the 𝑥-axis is defined by the wind direction (northerly by convention for our time-averaged plumes) and the 𝑦-axis is 165 

perpendicular to the wind direction. The integral is computed between the plume boundaries [𝑎, 𝑏] defined by the plume 

mask, and this computation can be done at multiple downwind distances 𝑥 to improve estimation of 𝑄 through averaging. 

Here we repeat the calculation at pixel-width intervals across the full extent of the detectable plume. 

The effective wind speeds in the IME and CSF methods are operational parameters that can be related to the local 

10-m wind speed 𝑈10. Varon et al. (2018) calibrated 𝑈eff = 𝑓(𝑈10) relationships for instantaneous plumes generated by large 170 

eddy simulation (LES), but the relationships may be different here for two reasons. First, we use a different definition of the 

plume mask, as described in the previous section. This affects the dependence of IME and plume transects on 𝑄. Second, the 



7 

 

dependences of IME (or plume transects) on wind speed and source rate may be different for time-averaged compared to 

instantaneous plumes.  

Here we calibrate new 𝑈eff = 𝑓(𝑈10) relationships for the IME and CSF methods, customized to our observing 175 

conditions and plume mask. To do this, we repeat the LES plume analysis of Varon et al. (2018) on the same ensemble of 

simulations, but with time-averaged rather than instantaneous plumes. The LES ensemble comprises 15 five-hour 

simulations with a range of wind speeds and boundary layer depths. We calibrate 𝑈eff = 𝑓(𝑈10) relationships for each coal 

mine independently, since for each we have a different number of observations and level of background noise. We use the 

following procedure. First, a number of LES plume snapshots are randomly drawn from the ensemble (24 for San Juan, 13 180 

for Appin, and 14 for Bulianta). The source rate for the plumes is set to 2500 kg h-1 as a typical value for large coal mine 

vent emissions (Jacob et al., 2016); this only affects the size of the detectable plumes and hence the plume mask. Each 

snapshot is rotated by a random wind direction, and the 5-minute average value of 𝑈10 at the source location is recorded. We 

corrupt the plume snapshots with normally distributed, spatially uncorrelated noise of mean zero and standard deviation 

dependent on the observation conditions of each mine (9%, 19%, or 12% of a 1850 ppb background). We then follow the 185 

wind direction optimization procedure outlined above (Eq. 1) to recover the LES plume wind directions from the randomly 

corrupted prior estimates, and assemble in this manner a time-averaged plume pseudo-observation. After constructing the 

plume mask and calculating IME, 𝐿, and the mean transect for the time-averaged plume, we use equations (2) and (3) to 

compute 𝑈eff based on prior knowledge of 𝑄 (2500 kg h-1). Meanwhile, we compute 𝑈10 for the time-averaged observation 

as the mean of the 5-minute averages across aggregated plumes. We repeat this procedure 100 times on a set of LES plumes 190 

comprising 80% of the ensemble (~2900 plume snapshots), simulating 100 time-averaged plumes. We then derive the 𝑈eff =

𝑓(𝑈10) relationships by least squares fitting. Finally, to quantify source rate retrieval error, we evaluate these relationships 

on time-averaged plumes constructed from the remaining 20% of the LES plume ensemble (see Supplemental Information).  

Figure 3 shows our derived 𝑈eff = 𝑓(𝑈10) relationships for the three coal mines. We find that linear relationships 

without intercepts capture the behaviour well in all cases, but the slopes depend on the number of observations aggregated, 195 

level of measurement noise, and wind direction prior error variance. As detecting the source becomes more difficult (due to 

fewer observations being available, stronger measurement noise, and/or worse wind direction priors), the slopes steepen to 

make up for loss of mass at the plume boundaries. The winds are fit by robust linear regression, which assigns less weight to 

outlier points, to mitigate the considerable scatter in 𝑈eff for larger values of 𝑈10. 𝑈eff = 𝑓(𝑈10) slopes for the CSF method 

are similar to the results of Varon et al. (2018), but slopes for the IME method are significantly different.  200 



8 

 

 

Figure 3: Effective wind speeds 𝑈eff for retrieving time-averaged methane source rates by the integrated mass enhancement (IME) and 

cross-sectional flux (CSF) methods (Eq. 3 and 4) as a function of the time-averaged 10-m wind speed 𝑈10 . The 𝑈eff = 𝑓(𝑈10) 

relationships are derived from large eddy simulations (LES) of instantaneous methane plumes, with time-averaging and wind rotation 

corresponding to our measurement conditions for (a) San Juan, (b) Appin, and (c) Bulianta. Each point represents a time-averaged plume 205 
assembled from LES instantaneous plumes, with the level of background noise and number of observations adapted to the mine of interest 

(see Table 1). The functions are fit by robust least squares (see text). 

RESULTS AND DISCUSSION 

Time-averaged plumes. Figure 4 shows our time-averaged rotated observations of the San Juan, Appin, and 

Bulianta coal mine vents, both before and after wind direction optimization. The plumes are oriented to the south of the 210 

source location by convention, and are separated from the noisy background by thresholding and smoothing as discussed in 

the “Defining plume boundaries” section. Enhancements above the threshold but not directly downwind of the source 

location are ignored as retrieval artefacts. 

Before optimizing wind direction to improve plume-to-noise contrast, the San Juan and Appin mine vents show 

strong time-averaged plumes with respective peak enhancements 7% and 20% above background. The Bulianta mine vent 215 

shows peak downwind enhancements 8% above background, but a less distinctive plume shape. One possible explanation for 

this is that the Bulianta vent is at the base of a hill, leading to large and potentially systematic wind direction error, in 

contrast to the San Juan and Appin vents, which are in flat terrain. Optimizing wind direction amplifies the plumes’ mean 
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enhancements by 11-13% and produces a more elongated plume shape for the Bulianta coal mine, with peak methane 

enhancements more than 10% above background. Peak plume enhancements do not generally appear at the source location, 220 

contrary to what one would expect. This could be because of systematic retrieval errors over the vent location (for example 

due to surface reflectance variability or aerosol particles in the plume). Missing large enhancements near the vent could lead 

to a low bias in IME emission rate estimates, but would have a smaller effect on the CSF method, where each cross-plume 

integral downwind of the source independently approximates the emissions. 

 225 

Figure 4: Time-averaged methane plumes from the San Juan, Appin, and Bulianta coal mine vents, as observed by GHGSat-D from 

August 2016 through December 2018. The single-pass observations have been rotated to a northerly wind direction using (a-c) local wind 

data from GEOS-FP and DarkSky and (d-f) optimized wind directions with GEOS-FP and DarkSky winds as prior estimates (see text). 

The methane column enhancements are overlaid on Google Earth Pro imagery after thresholding and smoothing with median and Gaussian 

filters (see text). The white markers show the locations of the coal mine vents in the centre of each scene.  230 

Time-averaged source rates. Table 1 shows our time-averaged source rate estimates for the San Juan, Appin, and 

Bulianta mines determined from the wind-optimized plumes. Estimates from the IME and CSF methods agree within their 
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error standard deviations, which is a first check that our effective wind speed functions are well-calibrated. We estimate 

mean emissions of 2300 ± 1020 kg h-1 for the San Juan vent, 5690 ± 2540 kg h-1 for the Appin vent, and 2600 ± 1010 kg h-1 

for the Bulianta vent using the IME method. The estimates are 7-13% lower using the CSF method, contradicting the 235 

possibility of low bias in the IME method. The uncertainties are about 40% and incorporate wind speed error, error in the 

IME and CSF models (including wind direction error and uncertainty in the effective wind speed fits of Fig. 3), and 

correlated random noise in the retrieved columns. A detailed error analysis is presented in the Supplemental Information.  

Also shown in Table 1 are previous emission estimates for each of the mine vents, all from much smaller samples 

and/or durations. Frankenberg et al. (2016) estimated emissions of 360-2800 kg h-1 for the San Juan vent based on several 240 

days of aircraft remote sensing measurements, and Smith et al. (2017) inferred mean emissions of 1446 kg h-1 from five days 

of aircraft mass balance measurements during the same period. Quarterly in-situ measurements of the vent flow rate and 

methane concentration reported to the United States Environmental Protection Agency (EPA) in 2017 put emissions from the 

San Juan vent at 2585 kg h-1 averaged over the year (EPA, 2017), in remarkable agreement with our estimate. Ong et al. 

(2017) approximated emissions of 10,800-12,600 kg h-1 from the Appin mine, based on estimates of the vent flow rate and 245 

air stream methane concentration. Cardno (2009) used coal production activity data and Australian National Greenhouse 

Accounts (NGA) emission factors to estimate ventilation shaft methane emissions of ~5200 kg h-1 for the Appin mine in a 

two longwall mining formation. We are aware of only one emission estimate for the Bulianta mine: 170 kg h-1, reported by 

the Chinese State Administration for Coal Mine Safety (SACMS). This estimate is based on ground measurements made 

during a 2-3 month safety evaluation performed in 2011 and is much lower than our result. Emissions from coal mine vents 250 

have large temporal variability, as shown by the Frankenberg et al. (2016) observations for San Juan, and satellite 

observations have unique value in providing long-term averages.  

In summary, our results demonstrate the capability of space-based observations of methane plumes to quantify point 

source rates from high-emitting facilities under apparently normal operating conditions. The GHGSat-D demonstration 

satellite instrument used in our work has fine spatial resolution (50-m) but coarse single-pass column retrieval precision (9-255 

19%) and large retrieval artefacts. Nevertheless, we were able to quantify time-averaged methane emissions from large coal 

mine vents (>1000 kg h-1) with ~40% uncertainty. This involved averaging 13-24 observations per target over a 2-year 

period, using an optimized wind rotation procedure. Our time-averaged result for the San Juan coal mine vent was in close 

agreement with the annual emission reported to the U.S. EPA. Future methane-observing satellite instruments with similar 

spatial resolution but improved precision, including GHGSat-C1 to be launched in 2020 (Jervis et al., 2019) and the next 260 

generation of orbiting hyperspectral surface imagers (Cusworth et al., 2019), will likely improve our ability to detect 

methane plumes from individual facilities and infer source rates. Quantifying sources down to 100 kg h-1 would account for 

more than 90% of emissions from point sources in the U.S. GHGRP (Jacob et al., 2016). Such thresholds for detection and 

quantification will continue to shrink as revisit rates for time-averaging increase with the number of instruments in orbit. In 

view of the large temporal variability of emissions from individual facilities, repeated measurements from satellites may be 265 

particularly useful for estimating annual emissions for facility-level reporting purposes.  
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Table 1: Methane source rates from coal mine vents retrieved with GHGSat-D  

Coal mine  San Juan Appin Bulianta 

Location    

Country United States Australia China 

State/Region New Mexico New South Wales Inner Mongolia 

Latitude 36.7928°N 34.1815°S 39.3835°N 

Longitude 108.3890°W 150.7197°E 110.0951°E 

    

Source retrieval metadata    

Averaging period Aug 2016 – Nov 2018 Nov 2016 – Oct 2018 Aug 2016 – Dec 2018 

Number of clear-sky observations 24 13 14 

Single-pass error level 9% 19% 12% 

10-m wind speed (m s-1) a 3.0 (0.5, 8.0) 2.2 (0.7, 3.8) 3.6 (0.9, 9) 

    

Source rate estimates (kg h-1) b    

IME method 2300 ± 1020 5690 ± 2540 2600 ± 1010 

CSF method 2150 ± 980 5030 ± 2100 2410 ± 970 

Previous estimates 360-2800c, 2585d, 1446e 5200f, 10800-12600g 170h 

 

a Mean (minimum, maximum) hourly wind speed for the ensemble of observations, obtained from the GEOS-FP database. 

b The reported source rates are for time-averaged plumes after wind direction optimization (Figure 4), and using either the 270 

integrated mass enhancement (IME) or cross-sectional flux (CSF) method. 

c Range from several days of aircraft remote sensing measurements in April 2015 (Frankenberg et al., 2016). 

d Annual mean estimate for 2017 from quarterly in-situ measurements of flow rate and methane concentration (EPA, 2017). 

e Mean estimate from five days of in-situ aircraft mass balance measurements (Smith et al., 2017). 

f Estimate based on annual coal production activity data and emission factors (Cardno, 2009; converted from kt CO2e a-1). 275 

g Estimate based on ventilation flow rate and air stream methane concentration from vent design (Ong et al., 2017). 

h Estimate from in-situ measurements during a weeks-long safety evaluation in 2011 (SACMS, 2011). 
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