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Abstract 

We use satellite observations from the Tropospheric Monitoring Instrument (TROPOMI) to map and 

quantify methane emissions from Mexico using an atmospheric inverse analysis. Our area of interest 20 

focuses on eastern Mexico—which covers the vast majority of the national oil and gas production. Using 

TROPOMI measurements from May 2018 to December 2019, our methane emission estimates for 

eastern Mexico are 5.0±0.2 Tg a-1 for anthropogenic sources and 1.5±0.1 Tg a-1 for natural sources, 

representing 45% and 34% higher annual methane fluxes respectively compared to the most recent 

estimates based on Mexican national inventory of greenhouse gases and compounds. Our results show 25 
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that Mexico’s oil and gas sector has the largest discrepancy, with oil and gas emissions (1.3±0.2 Tg a-1) 

higher by a factor of two relative to bottom-up estimates—accounting for a quarter of total 

anthropogenic emissions.  Our satellite-based inverse modeling estimates show that more than half of 

the oil/gas emissions in eastern Mexico are from the southern onshore basin (0.79±0.13 Tg a-1), pointing 

at high emission sources which are not represented in current bottom-up inventories (e.g., venting of 30 

associated gas, high-emitting gathering/processing facilities related to the transport of associated gas 

from offshore). These findings suggest that stronger mitigation measures are critical to curbing the 

anthropogenic footprint of methane emissions in Mexico, especially the large contribution from the oil 

and gas sector.   

  35 

1. Introduction 

Methane is the second most important anthropogenic greenhouse gas and has strong decadal climate 

impact (IPCC, 2013). Methane emissions from human activities has led to 0.97 Wm-2 of radiative forcing 

since preindustrial times, compared to 1.7 Wm-2 for carbon dioxide (Myhre et al., 2013). According to 

recent estimates, Mexico emits ~2% of global anthropogenic methane (Crippa et al., 2019) and 15% of 40 

anthropogenic methane emissions are from the oil/gas sector (Scarpelli et al., 2020). Methane emissions 

in Mexico are subject to large uncertainties (e.g. Scarpelli et al., 2020; Sheng et al., 2017) including the 

relative sectoral contributions to the national total. Existing bottom-up inventories estimate 4-7 Tg a-1 

for anthropogenic emissions and 0.8-3.6 Tg a-1 for the oil/gas sector (Janssens-Maenhout et al., 2019, 

Scarpelli et al., 2020; Sheng et al., 2017; SEMARNAT 2012; IMP 2012; INECC and SEMARNAT 45 

2018). In the case of emissions from oil and gas, these inventories are largely based on emission factors 
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generated for other countries, and not based on local measurements (INECC and SEMARNAT 2018)—

which increases the uncertainty in the magnitude of emissions and makes effective mitigation action 

more challenging.  

In the recent past, Mexico announced plans to reduce oil and gas related methane emissions by 40-45% 50 

by year 2025 relative to the 2012 levels of emissions 

(https://pm.gc.ca/en/news/statements/2016/06/29/leaders-statement-north-american-climate-clean-

energy-and-environment, accessed in October 2020). To support this emissions reduction target, the 

federal government published in 2018 a set of regulations that require each operating facility to report 

current emissions for each facility and develop emission reduction plans implementing a set of technical 55 

standards (e.g., use of zero bleed equipment, deployment of a system of frequent leak detection and 

repair activities) (https://www.dof.gob.mx/nota_detalle.php?codigo=5543033&fecha=06/11/2018, 

accessed in October 2020). For these mitigation policies to be effective—and to evaluate their 

outcomes— it becomes critical to quantify the current magnitude of emissions as well as spatial 

distribution of key sources. Here we use satellite observations aided by atmospheric inverse modeling 60 

to characterize methane emissions in eastern Mexico (east of 104°W), which accounts for 70% of 

national anthropogenic emissions, 99% of oil/gas production, and 95% of oil/gas emissions, according 

to the aforementioned current inventory estimates.   

Using aircraft measurements, Zavala-Araiza et al. (2020) found that the offshore emissions in Mexico 

are >10 times lower than the Mexican national greenhouse gas inventory estimate. In contrast, they also 65 

found that emissions for a key onshore production region are >10 times higher. Although field 
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campaigns can provide in-depth information, they are typically limited in their spatial extent and 

temporal duration. The space-borne Tropospheric Monitoring Instrument (TROPOMI) provides a novel 

opportunity to map the atmospheric methane enhancements in Mexico. Previous studies have 

demonstrated that TROPOMI can be used in the detection and quantification of methane emissions from 70 

large point sources and large emitting area sources (Varon et al., 2019; Pandey et al., 2019; Zhang et al., 

2020; de Gouw et al. 2020; Schneising et al. 2020). In this study, we will characterize the current national 

levels of anthropogenic methane emissions from eastern Mexico and demonstrate the effectiveness of a 

new emerging paradigm of the application of satellite observations in quantifying emissions from 

individual source sectors, with particular focus on the oil/gas sector.  75 

2. Data and Methods 

2.1. Satellite observations 

We use the column-averaged dry air methane ratios (XCH4) retrieved from TROPOMI measurements 

(Hasekamp et al., 2019) from May 2018 to December 2019 for the atmospheric inverse analysis. 

TROPOMI was launched in October 2017 and the operational datastream started in May 2018. It is 80 

onboard the polar sun-synchronous Sentinel-5 Precursor satellite with a ~13:30 local overpass time and 

provides daily global coverage in cloud-free conditions with 7 km x 7 km spatial resolution at nadir (Hu 

et al., 2018; Veefkind et al., 2012). The spatial resolution increased to 7 km x 5.5 km at nadir after 

August 2019. The XCH4 retrieval uses the 2.3 µm methane absorption band in the short-wave infrared 

(SWIR) and has near-unit sensitivity down to the surface. Only the recommended higher-quality XCH4 85 

measurements are used (Hasekamp et al., 2019) in this study (qa_value > 0.5). The TROPOMI XCH4 
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product has a global mean bias of 3-4 ppbv when validated with independent ground-based 

measurements from the Total Column Carbon Observing Network (TCCON) (Hasekamp et al., 2019; 

Lorente et al., 2020). When mapped to 0.1° x 0.1° horizontal resolution, TROPOMI coverage for May 

2018 – December 2019 includes >100 days of successful observations in northwestern Mexico and 40-90 

60 days along the east coast (Fig. S1). The glint ocean observations are not retrieved at this time from 

TROPOMI so there are no observations over the offshore regions of Mexico.  

We also use data on the tropospheric column density of NO2 from TROPOMI with a spatial resolution 

of 7 km x 3.5 km at nadir for the same time period, and the gas flaring radiant heat data (radiant 

temperature of 1,400 - 2,500 K for flaring detections) from the Visible Infrared Imaging Radiometer 95 

Suite (VIIRS) instrument onboard the Suomi National Polar-Orbiting Partnership satellite with a spatial 

resolution of 750 m x 750 m (Elvidge et al., 2016).  

2.2. GEOS-Chem flexgrid simulations and prior estimates 

We use GEOS-Chem 12.7.0 (https://doi.org/10.5281/zenodo.1343546) as the forward model to simulate 

the distribution of atmospheric methane and construct the sensitivity matrix of concentrations to the 100 

perturbation of emissions (Jacobian matrix) in the analytical inverse analysis. The model is driven by 

GEOS-FP reanalysis meteorological fields from NASA Global Modeling and Assimilation Office 

(GMAO, Lucchesi et al., 2013). We use a nested version of GEOS-Chem with 0.25° x 0.3125° horizontal 

resolution including 1199 grid cells in eastern Mexico (104°W-85°W, 14°N-32°N) (Fig. S2a). We use 

boundary conditions from a 4° x 5° global simulation, and we correct the bias in the global simulation 105 

using TROPOMI or correct the latitudinal bias for gridboxes where TROPOMI data is not available. To 
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better account for the transport, we enlarge the simulation domain by 4° (108°W-81°W, 10°N-36°N) in 

four directions, as shown in Fig. S2b. We aggregate these gridboxes outside eastern Mexico into 8 

clusters using the k-means algorithm based on the center longitudes and latitudes of each gridbox (Fig. 

S2b) and also optimize for the emissions to correct the bias in emissions upwind. Taken together, the 110 

state vector in our inverse analysis consists of 1,199 native gridcells in eastern Mexico and 8 clusters in 

the surrounding gridboxes (Fig. 1 and S2).  

An essential component of inverse analyses is the choice of a bottom-up inventory as a prior estimate. 

We use the 0.1°x0.1° anthropogenic emissions inventory for Mexico from Scarpelli et al. (2020), which 

is constructed by spatially allocating national emission estimates from the National Inventory of 115 

Greenhouse Gases and Compounds constructed by the Instituto Nacional de Ecología y Cambio 

Climático (INECC) with detailed sectorial breakdown (INECC and SEMARNAT, 2018). Even though 

the oil and gas production has decreased by 20-30% from 2015 to 2019 (Zavala-Araiza et al., 2020), the 

spatial distribution of oil and gas production remain unchanged (Fig. S3). Since there are no TROPOMI 

XCH4 retrievals over the offshore regions, we correct the emissions there based on aircraft measurements 120 

from Zavala-Araiza et al. (2020), which suggested that the bottom-up inventory in the offshore regions 

need to be decreased by 90%. Therefore, we apply a scaling factor of 0.1 to emissions from the oil/gas 

sector there, which leads to a decrease of 0.23 Tg a-1 in national oil and gas emissions. Prior 

anthropogenic emissions for the inversion are thus 3.4 Tg a-1 in eastern Mexico (70% of national total), 

with major contributors from livestock (1.40 Tg a-1, 60% of national sector total), landfill (0.61 Tg a-1, 125 

75%), oil and gas (0.55 Tg a-1, 96%), waste (0.53 Tg a-1, 72%), coal mining (0.24 Tg a-1, 88%), and 

anthropogenic biomass burning (0.02 Tg a-1, 79%).  Natural emissions are 1.1 Tg a-1 in total in eastern 
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Mexico, mainly from wetlands as given by the mean of the WetCHARTS inventory ensemble (Bloom 

et al., 2017). Taken together, the total emissions in eastern Mexico is 4.5 Tg a-1. Fig. S4 shows the 

distribution of these prior methane emissions over eastern Mexico.  130 

In addition, we also test the robustness of our inverse analysis by a series of sensitivity calculations 

involving perturbations to the prior inventory for the oil/gas sector. Zavala-Araiza et al. (2020) 

speculated that the transport of offshore associated gas to onshore infrastructure may be leading higher 

emissions from the onshore gathering and processing facilities. Here we not only decrease the offshore 

emissions by 90% but also redistribute these emissions to inland gridboxes. More specifically, our 135 

perturbations of oil/gas sources in prior inventory include (1) applying a scaling factor of 0.1 to offshore 

gridboxes (R5, see Fig. 1 for the definition of these domains) but 1.5 to all other gridboxes in eastern 

Mexico, and (2) applying a scaling factor of 0.1 to offshore gridboxes (R5) but 2.0 to onshore gridboxes 

(R6). These scaling factors applied here are based on the bottom-up inventory of Scarepelli et al. (2020) 

and the total emissions from the oil/gas sector are the same (0.78 Tg a-1) for these two variants of prior.  140 

2.3. Atmospheric inverse analysis 

We solve for the posterior estimates of spatially resolved methane emissions in eastern Mexico using 

Bayesian inverse analysis of methane observations in TROPOMI. The cost function J of this problem 

can be described as  

𝐽(𝒙) = (𝒙 − 𝒙𝑨)(𝑺𝑨*+(𝒙 − 𝒙𝑨) + g	(𝒚 − 𝑲𝒙)(𝑺𝑶*+(𝒚 −𝑲𝒙)  (E1) 145 

Where x is the state vector, xA is the prior estimates of emissions, K is the Jacobian matrix describing 

the sensitivity of column-averaged concentrations to the perturbation of emissions in each gridbox, y is 
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the methane observations from TROPOMI measurements, SA and SO are covariance matrices for prior 

and observational errors, and g is an additional regularization factor (Brasseur and Jacob, 2017). We 

construct the observational error covariance matrix So by applying the residual error method, which 150 

assumes that the statistics of residual error (after removing the mean bias) between the observations and 

a GEOS-Chem simulation with prior emissions defines the observational error variance (Heald et al., 

2004; Wecht et al., 2014). The resulting average observational error standard deviation in eastern 

Mexico is 15 ppb. We assume 50% error standard deviation for all anthropogenic and natural emissions 

on the 0.25°x0.3125° grid, with no spatial error covariance, as recommended by Scarpelli et al. (2020). 155 

We then account for the covariant structure of the observational error through the regularization term g  

in the inversion (Brasseur and Jacob, 2017; Maasakkers et al., 2019).  

The analytical solution for ∇xJ(x) = 0 yields the optimal estimate 𝒙2, the posterior error covariance matrix 

𝑺3, and the averaging kernel matrix A as follows 

𝒙2 = 𝒙𝑨 + 4g𝑲𝑻𝑺𝑶*+𝑲 + 𝑺𝑨*+6
*+
g𝑲𝑻𝑺𝑶*+(𝒚 −𝑲𝒙)  (E2) 160 

𝑺3*+ = g𝑲𝑻𝑺𝑶*+𝑲 + 𝑺𝑨*+     (E3) 

𝑨 = 𝑰𝒏 − 𝑺3𝑺𝑨*+      (E4) 

Where In is the identity matrix. The averaging kernel matrix A defines the sensitivity of the posterior 

solution to the true state.  The trace of A quantifies the degrees of freedoms for signal (DOFS), 

representing the number of independent pieces of information that can be effectively optimized in the 165 

inversion. We construct the Jacobian matrix K by perturbing each element of the state vector 
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independently. The state vector has a dimension of 1207, including 1199 native grid cells in eastern 

Mexico and 8 abutting grid cell clusters (Fig. S2).   

We use g  to account for missing covariant structure in the observational error So, particularly when there 

is more than one observation per model grid cell on a given day. g  is 1 only if all observations are 170 

independent. We determine the optimal regularization parameter g  based on the L-curve plot (Fig. S5) 

(Maasakkers et al., 2019). We choose g  to be 0.25, and also examine the sensitivity of our inverse results 

to the choice of g  by conducting sensitivity inversions with g  as 0.1 and 0.5. 

Throughout this study, we report the one standard deviation error of satellite derived emissions by 

including (i) the posterior error, (ii) the uncertainty of using three different priors, and (iii) the three 175 

different weighting of observations (g) through bootstrapping. 

2.4. Posterior correction factor for each sector 

Each grid cell consists of emissions from different sectors with different prior error standard deviations. 

Using one gridbox k with M different source sectors as the example, here we demonstrate how we 

calculate the posterior correction factor fi (1≤ i ≤ M) for each sector. We apply 50% error standard 180 

deviation to prior estimates for each gridbox (Scarpelli et al., 2020) and calculate the posterior correction 

factor f0 (f0 =
𝒙2𝒌
𝒙𝑨,𝒌

) from E2 for this gridbox k.   

; αifi

M

i=1

=f0				(𝐸5) 
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= 1			(𝐸6) 

Where 𝜶𝒊 is the fraction of emissions of each sector taken from the prior and fi is the posterior correction 185 

factor for ith sector in this gridbox. Here we assume that fi follows the Gaussian distribution of N(1, σi), 

where σi is the error standard deviation on the prior estimate. The cost function Z to optimize for the 

correction factor for each source sector can be written as 

𝑍 =;
(𝑓𝑖 − 1)

2

𝜎𝑖2
			(𝐸7)

𝑀

𝑖=1

 

To solve for the minimum of E7, we use the Cauchy–Schwarz inequality, which can be written as 190 

;
(𝑓? − 1)M

𝜎?M

@

?A+

;𝛼?M
@

?A+

𝜎?M ≥ O;𝛼?(𝑓? − 1)
@

?A+

P

M

= (𝑓Q − 1)M								(𝐸8) 

The equality holds when there exists a nonzero constant b such that for all 1≤ i ≤M, 

𝑓? − 1 = b𝛼𝑖𝜎?M											(𝐸9) 

Where b can be written as 

β =
𝑓0 − 1

∑ 𝛼𝑖2𝑀
𝑖=1 𝜎𝑖2

=
𝑓0 − 1
𝜎02

						(𝐸10) 195 

Where 𝜎Q is the prior error standard deviation for each grid cell and it is 50% in our case. So each fi can 

be written as 

𝑓? = β𝛼𝑖𝜎?
M + 1							(𝐸11) 
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We assume the local uncertainty from each sector is proportional to the reported national uncertainty. 

Scarpelli et al. (2020) found that the reported uncertainties are relatively large for fuel sectors but very 200 

small for the other major subsectors in Mexico. So we use the uncertainties from the U.S. gridded 

inventory (Maasakkers et al., 2016), which has similar uncertainties for fuel sectors but larger 

uncertainties for other anthropogenic sectors. More specifically, we use an error standard deviation of 

20% for oil/gas, 7% for coal, 26% for landfill, 8% for livestock, 10% for wastewater, 9% for rice, and 

53% for biomass burning; we also use 70% for wetland (Bloom et al., 2017) and 25% for all other 205 

sources. As part of this study, we will also test the sensitivity of our results to these national errors by 

assuming they have another 25% uncertainty. Here we have 

h;𝛼𝑖2
𝑀

𝑖=1

𝜎𝑖,𝑛𝑎𝑡𝑖𝑜𝑛2 = 𝜎02						(𝐸12) 

𝜎? = [h𝜎𝑖,𝑛𝑎𝑡𝑖𝑜𝑛			(𝐸13) 

Taken together, we can write the posterior correction factor for each sector as 210 

𝑓? =
h𝛼𝑖𝜎?,]^_?`]

M (𝑓Q − 1)
𝜎QM

+ 1											(1 ≤ 	i	 ≤ 10)						(𝐸14) 

3. Results 

3.1. Satellite observations and prior estimates 

Fig. 1A shows the spatial distribution of 2018-2019 averaged TROPOMI column-averaged methane 

mixing ratio over eastern Mexico. The data are corrected for topography following Kort et al. (2014) 215 

and Zhang et al. (2020) for visual clarity, but this correction is not used in the inverse analysis because 
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the GEOS-Chem forward model accounts for topography. Substantial enhancements of XCH4 above the 

topographic mean are found along the eastern coastal areas and in Mexico City. Fig. 1B displays the 

prior estimates of oil/gas emissions used in this study. It features 7 subdomains (R1-R7) that in total 

account for ~70% of national oil/gas emissions. The spatial distributions of XCH4 and oil/gas emissions 220 

generally show close association in eastern Mexico.   

Fig. 2a-b shows high oil/gas production along the coastal basins (R1-R6) but not in Mexico City. This 

is because emissions in Mexico City are mainly from the consumption segment (natural gas distribution 

and end use) and other sectors such as wastewater and landfills. Several of the production hotspots 

coincide as predominant oil and gas sources with the exception of the northernmost hotspot (R1) with 225 

intensive gas production but near-zero oil production. Regions R1-R6 account for 98% of national oil 

and 90% of national gas production (Table S1). 

We also analyze plausible associations between oil/gas production and emissions with oil/gas 

combustion related sources including flaring. Gas flaring is used to burn unwanted natural gas during 

oil exploration and production of oil/gas, particularly common in oil production basins where co-230 

produced associated gas is not effectively captured and processed. Data from the Visible Infrared 

Imaging Radiometer Suite (VIIRS) shows higher flaring intensity in oil/gas production regions R2-R6 

(Fig. 2c), which are associated with high oil production (Fig. 2a-b, Table S1). We also examine NO2 

over these onshore production areas, as previous work found enhanced NO2 concentrations attributable 

to gas flaring and other combustion activities in the US and offshore Mexico (e.g. Zhang et al. 2019; 235 

Duncan et al. 2016). The TROPOMI observations show enhanced NO2 concentrations in oil/gas 
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producing basins R2-R6, where flaring seems prevalent. High NO2 is also observed in Mexico City, 

where it can be attributed to other anthropogenic sources such as power plants and transportation in this 

urban area (Smith et al., 2018). We do not observe significant flaring heat (Fig. 2c) or elevated NO2 

concentrations in R1 (Fig. 2d), as it is dominated by gas production and little oil production, and flaring 240 

is not likely a major source of emissions there (Fig. a-b, Table S1). This observation of a close 

association between co-occurring enhancements in methane and NO2, and flaring in oil producing basins 

was also observed in the Permian Basin in the US recently (de Gouw et al. 2020; Zhang et al. 2020) and 

was previously explored by Zhang et al. (2019) for Mexican offshore production. 

3.2. Inverse analysis 245 

We quantify the emissions in eastern Mexico using TROPOMI measurements through an atmospheric 

inverse analysis. Fig. 3 shows the results of the inversion including the optimized posterior correction 

factors and the averaging kernel sensitivities. Our results show that we need to apply a posterior 

correction factor of 1.5-2.5 to Mexico City and onshore coastal areas (Fig. 3a), where in the case of the 

latter oil/gas related methane emissions are concentrated and dense oil/gas activity is co-located. The 250 

inversion is able to constrain about 33 pieces of independent information in the spatial distribution of 

methane emissions as measured by the averaging kernel matrix. The highest sensitivity is also found in 

these coastal regions and Mexico City (Fig. 3b), indicating TROPOMI data can provide better 

constraints there due to greater number of satellite observations (Fig. S1) and higher emissions (Fig. 1 

and S4). We find little corrections in Yucatan Peninsula (Southeastern Mexico) due to very few 255 

observations there (Fig. S1). The sensitivity is nearly zero in offshore gridboxes with no TROPOMI data.  
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Fig. S6a compares the column-averaged methane in TROPOMI with GEOS-Chem simulations using 

prior estimates of methane emissions for gridboxes with high averaging kernel sensitivity (>0.01) per 

gridbox in the inverse analysis. The prior simulation has a negative bias of 10-20 ppb across much of 

the eastern Mexico.  GEOS-Chem simulations based posterior estimates indicate that the bias decreases 260 

to <5 ppb in coastal areas and <10 ppb in Mexico City (Fig. S6b). This implies that our posterior solution 

can indeed provide improved forward model fit to observations.  

We attribute the posterior correction factors (E2) from the inversion to specific methane source sectors 

as described by E14. Based on E14, the posterior correction factor will be adjusted more for a specific 

sector if this sector has higher percentage in the total emissions and higher prior uncertainty. Fig. S7 265 

displays the posterior correction factor for the oil/gas sector, which shows higher values in gridboxes 

where the oil/gas emissions are the major source.  

We also conduct an ensemble of inversions to test the robustness of our results to different assumptions 

in the inverse equations, including using different weighting of observations (g=0.1, 0.25 and 0.5) and 

prior estimates through bootstrapping (three scenarios of priors, see Methods for more details, Fig. S8-270 

S10).  Fig. 4a compares our results with the prior emission totals for different sectors in eastern Mexico. 

We find most significant corrections are for the oil/gas sector, increasing from 0.55 Tg a-1 to 1.3±0.2 Tg 

a-1 in eastern Mexico. Other large corrections are for livestock and wetland. Our posterior estimates for 

eastern Mexico are 5.0±0.2 Tg a-1 for anthropogenic sources and 1.5±0.1 Tg a-1 for natural sources 

(details are provided in Table S2). The averaging kernel sensitivity computed following (Maasakkers et 275 

al., 2019) for the national emission estimate from each sector ranges from 0.6 to 1 (Table S2) for oil/gas, 
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coal, landfill, and livestock sectors, suggesting the effectiveness of our inverse modelling framework 

involving TROPOMI data towards quantifying the total amount and the broader spatial distribution for 

these sectors in Mexico; but the sensitivity is much lower for other sectors because the emissions are 

smaller.  280 

Fig. 4b further compares the prior and posterior emissions in the seven high-emitting regions from the 

oil/gas sector. In the posterior estimates, these seven regions can account for ~80% of total oil/gas 

methane emissions in eastern Mexico. Specifically, we find a correction factor of >2 in R1, R3, R4 and 

R5. TROPOMI has no XCH4 data over the ocean yet, therefore our inverse method has near-zero 

sensitivity in the offshore gridboxes (Fig. 3b) and the posterior emissions there remain almost unchanged 285 

(0.04±0.01 Tg a-1). The prior emissions in R5 are 0.23Tg a-1, and our posterior estimates increase them 

to 0.74±0.14 Tg a-1, which accounts for 57% of total oil/gas emissions in eastern Mexico (more details 

are listed in Table S3). We also compare our emissions with the estimates from Zavala-Araiza et al. 

(2020) in a subdomain of R5 (Fig. S8). Our estimates for the R5 subdomain are 0.5±0.1 Tg a-1, compared 

to 0.21-0.30 Tg a-1 (95% CI) using aircraft measurements for two days in 2018 and 0.2-0.7 Tg a-1 (95% 290 

CI) by applying mass-balance methods to 2018-2019 TROPOMI observations in Zavala-Araiza et al. 

(2020). As a sensitivity test, we allowed a 25% error standard deviation in the uncertainty of the national 

bottom-up inventory, showing little effect when compared to our central estimates (Fig. S11). This 

indicates our results are not sensitive to the choices of uncertainty of the bottom-up inventory.  

Table S4 shows the flared methane emissions from prior estimates and calculated from VIIRS 295 

measurements (see Text S1 for method details). The percentage of flaring related emissions relative to 
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the posterior emissions in the oil/gas sector based on the prior estimates is 50% in offshore gridboxes 

(R6) and 14%-38% in onshore ones (R1-R5). Since the combustion efficiency is subject to large 

uncertainty, we calculate the flared methane from VIIRS data in three scenarios with high (98%), 

medium (90%) and low (84%) efficiency (INECC and SEMARNAT, 2018, see Methods for more 300 

details). In the high efficiency scenario, flared methane can account for one third of posterior emissions 

in R6 but less than 6% in onshore gridboxes. These results indicate that flaring is a major source of 

emissions for the offshore region (R6) and that it is likely operated with a high combustion efficiency. 

Even in the less efficient combustion scenarios (which result in higher methane emissions), flaring still 

only accounts for <2% of posterior oil/gas emissions in R1 and R4, and 10-50% in R2, R3 and R5, much 305 

lower than the percentage from the prior estimates. These results for the onshore oil production regions 

(R2-R5) suggest that flaring doesn’t seem to be the main driver of emissions, hinting at the existence of 

additional non-flaring related sources in onshore gridboxes, especially for R5. Additional measurements 

that directly characterize flaring volumes and combustion efficiency are suggested as key next steps to 

further constrain emissions from this source (Caulton et al., 2004; Gvakharia et al., 2017; Zavala-Araiza 310 

et al., 2018). 

Oil/gas emissions in the southern onshore basin (R5) account for more than half of total oil/gas emissions 

in the eastern Mexico domain. A number of reasons may explain the potentially high non-flaring related 

sources in R5. First, the gas produced offshore (R6) is transported to onshore (R5) infrastructures - and 

as speculated by Zavala-Araiza et al. (2020) - is partially released to the atmosphere from the gathering 315 

and processing facilities within this region. In addition, Zhang et al. (2019) observed decreasing flared 

gas volume from offshore Mexico after 2008, which is in accordance with infrastructure investment (e.g. 
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construction of new pipelines) to transport gas onshore aimed at reducing offshore flaring and venting 

(Romo, 2010). Given that the oil/gas production in R6 is 3-4 times higher than R5 (Table S1), this gas 

redistribution can easily increase the emissions in R5 (Fig. S12 and Table S1). Based on the satellite 320 

derived posterior emissions, the relative methane loss rate as normalized by gas production is 4.7% in 

eastern Mexico. The loss rate is in a moderately high range for R1-R4 (2%-6%), extremely high for R5 

(13%) and low for R6 (0.4%). For reference, US average methane loss rate is 2.3% (Alvarez et al., 2018) 

and loss rate for Permian basin in Texas is 3.7% (Zhang et al., 2020). The relative loss rate for R5 

becomes 3%-5% if we assume 50%-100% gas produced in R6 is transported to R5. The calculation may 325 

support the assumption that R5 receives gas from R6 and help explain the relatively high emissions in 

R5 compared to all the other regions. These relatively high loss rates also suggest that oil/gas basins in 

Mexico have strong mitigation potential. Our second possible explanation for the large emissions is that 

most newly drilled wells from 2015-2019 are located in the southern onshore basin R5 (Fig. S12 and 

S13). It is plausible that a large fraction of the associated gas co-produced in R5 is vented to the 330 

atmosphere instead of flaring it or capturing it. Third, Zavala-Araiza et al. (2020) shows that processing 

plants in this region are large point sources (i.e., Nuevo Pemex and Cactus), and R5 has five processing 

plants while other basins have at most one (Table S5).  

Several improvements could be made to further reduce the uncertainty of emissions estimates of this 

study.  First, much of eastern Mexico has observations in <60 days of observations during this 20-month 335 

period (Fig. S1). Areas where lower sampling frequency exists reduces the capability of using 

TROPOMI to constrain the spatial distribution of emissions (Lorente et al., 2020), which can be 

improved by using a longer period of observations after more data are acquired during the ongoing 
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satellite observations in the coming years. Second, our study points to large non-flaring related emissions 

in R5, which should be further characterized with measurements at more granular scales. Ground-based 340 

and airborne-based measurements at the facility-level are needed to provide more in-depth information 

about the specific sources of high-emissions and therefore helping identify mitigation actions (Robertson 

et al., 2020; Johnson et al., 2017; Gorchov et al., 2020). In addition, satellite observations with fine pixel 

resolution could also be useful in characterizing point sources (Cusworth et al, 2019; Varon et al., 2019). 

We suggest in depth field measurements, combined with high-resolution airborne/satellite surveys, are 345 

needed to provide more detailed emissions characteristics from the observed methane hotspots, as 

presented in our paper.  

4. Conclusions 

In this study, we use 2018-2019 observations of column-averaged methane mixing ratio from TROPOMI 

to estimate methane emissions in eastern Mexico through an atmospheric inverse analysis at 350 

0.25°x0.3125° horizontal resolution. Our work uses state-of-the-art emission inventories (Scarpelli et 

al., 2020) as prior estimates and also compare the emissions in the southern onshore and offshore basins 

to recent independent empirical estimates using aircraft measurements from Zavala-Araiza et al. (2020). 

Our posterior estimates for eastern Mexico are 5.0±0.2 Tg a-1 for anthropogenic sources and 1.5±0.1 Tg 

a-1 for natural sources. The posterior emissions from oil and natural gas production are scaled up by a 355 

factor of >2 and reach 1.3±0.2 Tg a-1, which accounts for a quarter of the anthropogenic emissions in 

eastern Mexico. This represents a loss rate of roughly 4.7% (methane emissions divided by gross natural 

gas production). Our posterior estimates show that 57% of the oil/gas emissions in eastern Mexico occurs 

in the southern onshore basin (0.79±0.13 Tg a-1), pointing at additional sources of high-emissions which 
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are not represented in current bottom-up inventories (e.g., venting of associated gas, 360 

gathering/processing facilities emitting associated gas transported from offshore)—and require further 

characterization at a more granular scale. Overall, we find large discrepancy in oil/gas related methane 

emissions from Mexico, suggesting stronger measures are needed to effectively reduce emissions. Our 

work has demonstrated application of TROPOMI data in assessing the state of emissions on a national 

and regional basis as well as providing information on a sectoral basis.  365 
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Fig. 1. TROPOMI column methane and oil/gas sectoral bottom-up emissions. (a) TROPOMI 

satellite observations (May 2018 – December 2019), mapped to 0.1°x0.1 resolution and 

corrected for surface topography as 7 ppb/km (Kort et al., 2014, Zhang et al. 2020). This altitude 530 

correction is for visual purposes only; the actual inversion uses the uncorrected TROPOMI data 

since the forward model accounts for surface topography. White areas have no observations 

(ocean, mountains). (b) Bottom-up emissions from the oil/gas sector in eastern Mexico from 

Scarpelli et al. (2020) for 2015 with 0.1°x0.1 resolution, and including downward correction to 

offshore oil/gas emissions (see text). Seven regions (R1-R7) with high emissions are defined 535 

by rectangles in both panels. 
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Fig. 2. Oil/gas production, flaring radiant heat, and TROPOMI NO2 column mixing ratio in 

eastern Mexico. (a) Oil production from the Hydrocarbon Information System 

(https://sih.hidrocarburos.gob.mx/, accessed in June 2020). The unit Mbd is thousand barrels 540 

per day. (b) Same as (a) but for gas production. The unit MMcfd is million cubic feet per day. 

(c) Gas flaring radiant heat from the Visible Infrared Imaging Radiometer Suite (VIIRS) data 

(Elvidge et al., 2015). (d) Tropospheric column density of NO2 from TROPOMI. All data are 

averages for May 2018 - December 2019 in eastern Mexico.   
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 545 

 
Fig. 3.  Posterior correction factors and averaging kernel sensitivity in eastern Mexico. (a) 

TROPOMI data derived posterior correction factors using Bayesian inverse modelling. (b) 

Averaging kernel sensitivities representing the diagonal terms of the averaging kernel matrix. 
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Fig. 4. Prior and posterior oil/gas emissions for different source sectors and high oil/gas emitting 

regions. (a) Annual mean prior and posterior methane emission in eastern Mexico for different 

sectors. The error bars denote the 95% confidence intervals (± 2s), including uncertainty from 555 

both posterior errors and using different prior estimates and weighting of observations (g). (b) 

Same as (a), but for the emissions from the oil/gas sector in 7 high-emitting regions.  
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