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Abstract. We construct a continuous 24-h daily fine particulate matter (PM2.5) record with 2×2 km2 
resolution over eastern China, South Korea, and Japan for 2011-2022 by applying a random forest (RF) 
algorithm to aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager 20 
(GOCI) I and II satellite instruments. The RF uses PM2.5 observations from the national surface 
networks as training data. PM2.5 network data starting in 2015 in South Korea are extended to pre-2015 
with a RF trained on other air quality data available from the network including PM10. PM2.5 network 
data starting in 2014 in China are supplemented by pre-2014 data from the US embassy and consulates. 
Missing AODs in the GOCI data are gap-filled by a separate RF fit. We show that the resulting GOCI 25 
PM2.5 dataset is successful in reproducing the surface network observations including extreme events, 
and that the network data in the different countries are representative of population-weighted exposure. 
We find that PM2.5 peaked in 2014 (China) and 2013 (South Korea, Japan), and has been decreasing 
steadily since with no region left behind. We quantify the population in each country exposed to annual 
PM2.5 in excess of national ambient air quality standards and how this exposure evolves with time.  The 30 
long record for the Seoul Metropolitan Area (SMA) shows a steady decrease from 2013 to 2022 that 
was not present in the first five years of AirKorea network PM2.5 measurements. Mapping of an extreme 
pollution event in Seoul with GOCI PM2.5 shows a predicted distribution indistinguishable from the 
dense urban network observations, while our previous 6×6 km2 product smoothed local features. Our 
product should be useful for public health studies where long-term spatial continuity of PM2.5 35 
information is essential.  
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1. Introduction 

Outdoor fine particulate matter (PM2.5, less than 2.5 μm in diameter) is a leading cause of morbidity and 
mortality, with exposure leading to 8.9 million deaths worldwide in 2015 and increased diagnoses of 
respiratory, cardiovascular, and neurodegenerative diseases (Dominici et. al., 2006; Kioumourtzoglou 40 
et. al., 2016; Burnett et. al., 2018 Wei et. al., 2019). East Asian countries experience particularly high 
concentrations of PM2.5. China introduced its Action Plan on Prevention and Control of Air Pollution in 
2013 (Chinese State Council, 2013) and South Korea introduced its Comprehensive Action Plan on Fine 
Dust in 2017 (Joo, 2018). As a result, concentrations declined in the latter half of the 2010s 
(Pendergrass et al., 2022). However, the publicly available archive of PM2.5 measurements from 45 
national surface networks only started in 2014 in China and in 2015 in South Korea, and even today 
they are relatively sparse for public health applications. Here we use geostationary satellite observations 
of aerosol optical depth (AOD) from the Geostationary Ocean Color Imager (GOCI) I and II 
instruments, trained with surface PM2.5 data using a machine learning algorithm, to provide complete 
2011-2022 daily 24-h coverage of surface PM2.5 concentrations at 2×2 km2 resolution for eastern China, 50 
South Korea, and Japan. 

Satellite retrievals of AOD from backscattered solar radiation have long been used to expand 
surface PM2.5 coverage beyond that provided by network sites. Early applications used AOD/PM2.5 
ratios computed with a chemical transport model (CTM) to infer surface PM2.5 from observed AOD 
(Liu et al., 2004; van Donkelaar et al., 2006; van Donkelaar et al., 2021) but this may be affected by 55 
CTM biases. More recent applications have used machine learning algorithms to train satellite AODs on 
PM2.5 network measurements (Guo et al., 2021; Pendergrass et al., 2022; Wongnakae et al., 2023). 
Commonly used machine learning algorithms include XGBoost and Random Forest (RF), both based on 
decision trees, and neural networks; precision tends to be similar across algorithms (Di et al., 2019; 
Kulkarni et al., 2022). RF approaches are widely used due to their explainability and consistently strong 60 
performance with minimal hyperparameter tuning (Breiman, 2001). 

In East Asia, studies inferring PM2.5 from satellite AOD data have benefited from new 
geostationary instruments including GOCI (launched 2010), the Advanced Himawari Imager (AHI, 
launched 2014), the Advanced Meteorological Imager (AMI, launched 2018), GOCI-II and GEMS 
(launched in 2020), which provide continuous hourly or subhourly measurements during daytime (Choi 65 
et al., 2018; Lim et al., 2018; Lee et al., 2023; Kim et al., 2023; Cho et al., 2023a). The RF method has 
been used to infer hourly PM2.5 from geostationary AOD (Liu et al., 2022; Tan et al., 2023; Cho et al., 
2023b), but geostationary AOD also improves inference of 24-h mean PM2.5; Park et al. (2019) found 
that an RF algorithm trained to predict PM2.5 from GOCI AOD outperformed an otherwise identical one 
trained on the MODIS low-earth orbit instrument. Our previous work (Pendergrass et al., 2022) used 70 
GOCI I observations to produce a continuous 24-h 6×6 km2 PM2.5 product for eastern China, South 
Korea and Japan for the network observation periods (starting in 2014 in China and 2015 in South 
Korea) and extending to 2019.  

Here we use a continuous, gap-filled record of AOD retrieved from GOCI I and its successor 
GOCI II on a consistent 2×2 km2 grid to infer surface PM2.5 at 24-h temporal resolution from March 75 
2011 through the end of 2022 for eastern China, Japan, and South Korea. We make use of an improved 
AOD gap-filling procedure by using a separate RF fit trained to reproduce AOD data. To provide 
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continuity in training across the study domain from 2011 to present, we additionally develop and 
evaluate a virtual network PM2.5 record prior to 2015 in South Korea by training an RF on network 
observations of coarse particulate matter (PM10) and other air pollutants. In China, we make use of US 80 
embassy and consulate PM2.5 data to train the RF before 2014. We use the resulting GOCI PM2.5 dataset 
to analyze urban and regional trends in PM2.5 including population exposures. 

2. Methods 

Pendergrass et al. (2022) used GOCI I AOD observations to produce a continuous 24-h 6×6 km2 
PM2.5 product for eastern China, South Korea and Japan for the surface network observation periods 85 
(starting in 2014 in China, 2015 in South Korea, and 2011 in Japan) and extending to the end of 2019. It 
gap-filled missing GOCI I AOD data by blending a CTM simulation with statistical interpolation 
(inverse distance weighted means).  
 Here we improve on Pendergrass et al. (2022) in several major ways. First, we extend the AOD 
record using the GOCI II instrument to cover the 2011-2022 period, and replace the 6×6 km2 GOCI I 90 
AOD with a 2×2 km2 GOCI I AOD retrieval (section 2.1). We replace the statistical AOD gap-filling 
method of Pendergrass et al. (2022) with an additional AOD RF fit (section 2.2). To avoid biased PM2.5 
estimates in South Korea prior to the beginning of the AirKorea national network observations in 2015, 
we use an additional RF to infer surface observations of PM2.5 in South Korea at the network sites using 
measurements of other air quality variables including PM10 starting from 2011 (section 2.3). In China, 95 
we avoid extrapolation bias by supplementing surface network data with data from the US embassy and 
consulates, which date from 2011. Finally, we train an RF on the gap-filled AOD and other predictor 
variables to construct a continuous 24-h 2×2 km2 PM2.5 product for China, South Korea, and Japan 
covering the 2011-2022 period (section 2.4). Table 1 lists the predictor variables for all of the RFs used 
in this work. 100 

We evaluate how each RF performs and learns via a 10-fold crossvalidation procedure and 
Shapley analysis. The crossvalidation measures how well an RF can make predictions based on more 
limited training data. For each fold of the crossvalidation, we leave out a randomly selected 10% of sites 
entirely from training; in this way, the crossvalidation measures the ability of the RF to generalize 
spatially to unseen sites. We compare RF-predicted AOD and PM2.5 (24-h and annual) to the withheld 105 
observed AOD and PM2.5 using four metrics: the root mean square error (RMSE); the RMSE divided by 
mean observed value (relative RMSE, or RRMSE); the coefficient of determination (R2); and the mean 
bias computed by averaging the difference between predicted and observed values (MB). To determine 
the contributions of training variables to the overall RF estimate, we use the SHapley Additive 
exPlanations (SHAP) analysis as implemented by the TreeExplainer algorithm (Lundberg et al., 2020). 110 
This method allocates a SHAP value, in the same unit as the target variable (µg m-3 for PM2.5, unitless 
for AOD), to each predictor variable and can be interpreted as the importance of that variable to the 
trained RF algorithm. All RFs are produced using the Python module scikit-learn (Pedregosa et. al., 
2011).  
 115 
Table 1. Random Forest predictor variablesa 
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GOCI (gap-filled) and GEOS-Chem  
     GOCI I AOD 8-h average (0:30-7:30 UTC) at 550 nm wavelength (2011-2020) 
     GOCI II AOD 10-h average (23:15-8:15 UTC) at 550 nm wavelength (2021-2022) 
     Gaspari-Cohn missingness factor 𝛼b	
     Bias-corrected GEOS-Chem monthly mean AODc 
Meteorologyd 
     Boundary layer height (m)† 
     10-m meridional wind (m s-1)* 
     10-m zonal wind (m s-1)* 
     2-m temperature (K)* 
     2-m relative humiditye (%)* 
     Sea-level pressure (Pa)† 
KORUSv5 emissionsf  
     NOx (molec m-2 s-1) 
     SO2 (molec m-2 s-1) 
     NH3 (molec m-2 s-1) 
Land use 
     Land cover type (cropland, urban, rural)g 
     Population densityh 
     Elevationi 
     Normalized Difference Vegetation Index (NDVI)j 
Metadata 
     Country categorical variablesk 
     Day of year 
     Year 
AirKorea surface air quality datal 
     CO (ppm) 
     NO2 (ppm) 
     O3 (ppm) 
     SO2 (ppm) 
     PM10 (μg m-3) 
     Yellow dust categorical variable (T/F) 

aThese predictor variables are used for three separate RF fits: (1) GOCI PM2.5, (2) imputing pre-2015 PM2.5 at AirKorea sites from PM10 and 
other predictors, and (3) gap-filling GOCI AOD. Unless otherwise noted, the data are used in all three RFs and are mapped onto the 2x2 km2 
GOCI grid cells.  
bWeighting factor with a value of 1 if AOD is retrieved successfully at least once in a given day in a given 2×2 km2 grid cell and 
descending to 0 as distance to the nearest successful retrieval increases. Not used to in the GOCI AOD gap-filling RF. See section 2.2. 120 
cSimulation from Zhai et al. (2021) at 0.5° × 0.625° resolution and corrected to annual mean GOCI observations on the 2×2 km2 grid. 
dMeteorological data from either the ECMWF hourly 9×9 km2 resolution ERA5-Land replay of the ERA5 global reanalysis (denoted *) or 
hourly 30×30 km2 from ERA5 (†), interpolated bilinearly to the GOCI grid and averaged over 24 hours. For coastal pixels missing from the 
ERA5-Land data, we impute values from ERA5. 
e Inferred from temperature and dewpoint using the August-Roche-Magnus approximation (Alduchov and Eskridge, 1996). 125 
f 2015 emissions for East Asia on a 0.1° × 0.1° grid (Woo et al., 2020). 
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g Land cover data at 300 m resolution for 2015 is obtained from the from the PROBA-Vegetation (PROBA-V) and Sentinel-3 OLCI (S3 
OLCI) time series (https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview; CDS, 2019). We aggregate the 
data to one of three categories based on the most prevalent land cover type within a 2×2 km2 GOCI grid cell: urban areas, cropland 
(irrigated, rainfed, and mosaic but majority cropland), and rural (all other non-water pixels with minimal human modification). 130 
h2015 population density at 30 arc second resolution from the Gridded Population of the World v4.11 dataset (CIESIN, 2018) 
iElevation from the global multi-resolution terrain elevation data 2010 digital elevation model (GMTED2010), corrected and aggregated to 
0.0625° resolution by the Tropospheric Emission Monitoring Internet Service (https://www.temis.nl/data/gmted2010/index.php; Danielson 
and Gesch, 2011). 
jDaily Normalized Difference Vegetation Index (NDVI) derived from the NOAA Climate Data Record (CDR) of Advanced Very High 135 
Resolution Radiometer (AVHRR) Surface Reflectance and reported at 0.05°×0.05° resolution (Vermote 2019). A small number of NDVI 
pixels are missing, which are imputed by first looking for a successful retrieval within two weeks of the day in question and if that fails by 
inverse distance weighting. 
kThree variables that, for each of eastern China, South Korea, and Japan, have value 1 if a grid cell is within those national borders and 0 
otherwise.  140 
lUsed as input in the pre-2015 AirKorea PM2.5 RF. Yellow dust variable is true if a dust event (due to transport from China/Mongolia) is 
observed at a given site that day. 

2.1 GOCI, GEOS-Chem, and PM2.5 input datasets 

GOCI I and II AOD. GOCI I was launched in 2010 by the Korea Aerospace Research Institute (KARI) 
and recorded data every hour eight times daily at 0.5×0.5 km2 pixel resolution over eastern China, the 145 
Korean peninsula, and Japan (Choi et. al., 2018) until it was shut down in early 2021. GOCI II, 
launched in February 2020, continues the GOCI mission with improved 0.25×0.25 km2 pixel resolution, 
four additional spectral bands, and ten times daily retrievals over an expanded daytime window (Lee et 
al., 2023). The Yonsei aerosol retrieval (YAER) algorithm family computes AOD from GOCI 
measurements by aggregating the native GOCI pixels to improve accuracy and cloud clearing into a 6×6 150 
km2 AOD product for GOCI I (GOCI YAER v2; Choi et al., 2018) and a 2.5×2.5 km2 AOD product for 
GOCI-II (GOCI-II YAER; Lee et al., 2023). Lee et al. (2017) showed that fewer GOCI I pixels could be 
aggregated to produce a higher resolution AOD product with a modest tradeoff in precision. In this 
work, we use their 2×2 km2 GOCI I AOD product (produced from 4×4 GOCI I pixels) which exhibits 
an R2 of 0.825 relative to AERONET for 2016 as compared to 0.858 for the standard GOCI YAER v2 155 
6×6 km2 AOD product (Lee et al., 2017).  

To produce a continuous GOCI AOD training dataset, we first aggregate GOCI I AOD into an 
8-h average (0:30-7:30 UTC) and GOCI II AOD into a 10-h average (23:15-8:15 UTC), representing 
the full daily records of each instrument, then regrid the 2.5×2.5 km2 GOCI II AOD to the 2×2 km2 
GOCI I grid by bilinear interpolation. We use the GOCI I AOD for March 2011 through December 160 
2020 and the GOCI II AOD for January 2021 through December 2022. We remove 1.7% of pixels in 
the GOCI II record with an AOD outside the range observed by GOCI I (-0.05 to 3.6). The GOCI II 
AOD retrieval is biased low over land relative to AERONET while GOCI I shows no significant bias 
(Lee et al., 2023). To avoid spurious trends in the inferred PM2.5, we incorporate relevant training data 
into the RF as described in Section 2.4.   165 
 
Bias-corrected GEOS-Chem monthly mean AOD. Following Pendergrass et al. (2022), we use bias-
corrected GEOS-Chem CTM AODs to blend with GOCI I and II AODs in the gap-filling RF. The 
GEOS-Chem AODs are monthly means from a simulation by Zhai et al. (2021) for 2016 in East Asia 
with 0.5° × 0.625° resolution. We bias-correct the GEOS-Chem AODs to match the annual mean GOCI 170 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview
https://www.temis.nl/data/gmted2010/index.php
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I and II AODs on the 2×2 km2 grid for each year in the 2011–2022 period. In this way, we obtain a 
spatial distribution of monthly mean bias-corrected GEOS-Chem AOD values. 
 
Surface PM2.5 data.  We use hourly PM2.5 data from operational air quality networks in eastern China, 
South Korea, and Japan, and average the data over 24 hours and over the 2×2 km2 GOCI AOD grid to 175 
define targets for the RF algorithm. Data for eastern China are from the National Environmental 
Monitoring Center (CNEMC; https://quotsoft.net/air/), with measurements in Beijing beginning in 
December 2013 and for the rest of the country in May 2014. Following Zhai et. al. (2019) we remove 
values with more than 24 consecutive repeats in the hourly timeseries as likely in error. Data in China 
are supplemented by US embassy data in Beijing (beginning in March 2011) and US consulates data in 180 
Shanghai (beginning in December 2011) and Shenyang (January 2013) 
(https://www.airnow.gov/international/us-embassies-and-consulates). These US embassy and consulates 
data have been used in previous air quality studies (Li et al., 2018; Pendergrass et al., 2019). Data for 
South Korea are from the AirKorea surface network (https://www.airkorea.or.kr/), which added PM2.5 
beginning in January 2015. Data for Japan are from the Japanese National Institute for Environmental 185 
Studies (NIES) for 2011-2021 (https://tenbou.nies.go.jp/download/) and for 2022 by the AEROS 
network (https://soramame.env.go.jp/download). 

2.2 Gap-filled AOD and AOD missingness metric 

The GOCI AOD records have gaps from clouds, snow cover, and other causes. Following Di et al. 
(2019), we perform gap-filling by using a separate GOCI AOD RF fit trained on the predictor variables 190 
of Table 1 except GOCI I and II AOD (the target variables in this case), the Gaspari-Cohn factor 𝛼 
(which has value 1 for all successful AOD retrievals), and the AirKorea surface air quality data. 
Because of the size of the AOD gap-filling problem, we use a separate RF for each year of data for 
computational economy. Training the GOCI AOD RF with annually disaggregated input data also 
avoids bias from gap-filling GOCI I based on information from GOCI II and vice versa. As shown in 195 
Figure 1, we find using a ten-fold crossvalidation that our GOCI AOD RF explains 91% of 24-h 
variability (R! = 0.91; annual R! = 0.96) with no significant mean bias. Our approach here improves 
on the statistical gap-filling method used in Pendergrass et al. (2022) which led to smooth AOD 
interpolation over large missing areas which may have been unphysical. To understand the variables 
driving the gap-filling prediction, we perform a SHAP analysis (lower panel) for a random sample of 200 
0.1% of AOD data for 2016. NDVI is the most important predictor, perhaps because NDVI is predictive 
of AOD biases in both the GOCI I and II products (Choi et al., 2018; Lee et al., 2023), followed by 
GEOS-Chem modeled AOD and the six meteorological input variables; 2-m temperature and day of 
year are likely metrics for the seasonal variability of AOD.  

 The GOCI AOD gaps are non-random as they result from specific conditions that would not be 205 
part of the training dataset. However, Brokamp et al. (2018) found that when inferring PM2.5 from AOD 
the non-randomness of AOD retrieval failure could be exploited to improve PM2.5 predictions. 
Following Pendergrass et al. (2022), we compute an AOD missingness factor 𝛼 that takes on a value of 
1 if AOD is retrieved successfully at least once in a given day in a given grid cell and descending to 0 as 
distance to the nearest successful retrieval increases. We compute 𝛼	with the Gaspari-Cohn function, a 210 

https://quotsoft.net/air/
https://www.airnow.gov/international/us-embassies-and-consulates
https://www.airkorea.or.kr/
https://tenbou.nies.go.jp/download/
https://soramame.env.go.jp/download
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polynomial with a single radial argument 𝑟 that takes on a maximum value of 1 for 𝑟 = 0 and a 
minimum value of 0 for 𝑟 ≥ 2 (Gaspari and Cohn, 1999). We obtain 𝑟 for a given grid cell and day by 
normalizing the distance from the grid cell to that of the nearest AOD retrieval against an empirically 
determined spatial correlation length scale ranging from 110 km to 170 km across the domain 
(Pendergrass et al., 2022). By passing the Gaspari-Cohn factor 𝛼 to the GOCI PM2.5 RF, we allow the 215 
algorithm to learn the optimal correction strategy in cases of AOD retrieval failure. 
 

 
Figure 1: Evaluation of the GOCI AOD RF predictions. The top panels evaluate the GOCI AOD RF predictions in the 2011-22 training 
period at grid cells withheld entirely from training in a ten-fold crossvalidation procedure, aggregated at (a) 24-h and (b) annual resolution. 220 
Results are shown as two-dimensional histograms where pixel color corresponds to the count of observation/prediction correspondences 
within the corresponding bin, with statistics inset and the identity line shown in black. The bottom panel shows the top ten predictors of 
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AOD ranked by importance by the SHAP analysis. Predictor variable contributions are shown by mean absolute SHAP values and standard 
deviations.  

2.3 Inferring South Korea PM2.5 before 2015 225 

Prior to the January 2015 addition of PM2.5 measurements, the AirKorea surface network measured CO, 
O3, NO2, SO2, and PM10 concentrations.  Many sites also recorded events of “yellow dust” transported 
from deserts in Mongolia and northern China (categorical true/false variable). We train a separate 
AirKorea PM2.5 RF on the 2015-2020 data, with all predictor variables in Table 1 except year and 
country categorical variables, to predict 24-h 2011-2014 PM2.5 at AirKorea sites. Figure 2 evaluates the 230 
ability of the AirKorea PM2.5 RF product by its ability to match observed PM2.5 in the 2015-2020 
period. We find using a ten-fold crossvalidation that the AirKorea PM2.5 RF is able to predict 88% of 
24-h PM2.5 variability in the 2015-2020 record with no significant bias.   
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Figure 2: Evaluation of the AirKorea PM2.5 RF predictions. The top panels evaluate the AirKorea PM2.5 RF predictions in the 2015-2020 235 
training period at grid cells withheld entirely from training in a ten-fold crossvalidation procedure, aggregated at (a) 24-h and (b) annual 
resolution. Middle panels show an independent evaluation with observed 2011-2014 PM2.5 from the Seoul Research Institute surface network 
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in the city of Seoul, selecting the 20 sites that are collocated with AirKorea sites on the 2×2 km2 GOCI grid. Panels (a-d) show two-
dimensional histograms where pixel color corresponds to the count of observation/prediction correspondences within the corresponding bin, 
with statistics inset and the identity line shown in black. The bottom panel shows the top ten predictors of AirKorea PM2.5 ranked by 240 
importance by the SHAP analysis. Predictor variable contributions are shown by mean absolute SHAP values and standard deviations. 

   To independently evaluate the AirKorea PM2.5 RF for the pre-2015 period, we use 2011-2014 
hourly PM2.5 data collected at 25 sites in the city of Seoul by the Seoul Research Institute of Public 
Health and Environment (NIER 2022) and select sites that are collocated with AirKorea sites within a 
2×2 km2 GOCI grid cell (20 sites). We find that the AirKorea PM2.5 RF reproduces successfully the 245 
2011-2014 city of Seoul data (Figure 2), with statistics similar to the 2015-2020 crossvalidation. The 
annual R2 is weak but this can be explained by the small sample size and small dynamic range. The 
most important predictor variable by far is PM10, followed by CO and relative humidity. Figure 3 shows 
how the AirKorea PM2.5 RF maps 2011-2014 PM10 data to infer PM2.5. 
 250 
 

 
Figure 3: 2011-14 mean observed PM10 and inferred PM2.5 at AirKorea sites. The AirKorea PM2.5 RF is trained on data in Table 1 and its 
Shapley analysis is in Figure 2. 

2.4 RF inference of PM2.5 from GOCI AOD 255 

After producing a gap-filled AOD dataset with the GOCI AOD RF and a 2011-2014 PM2.5 target 
dataset for South Korea with the AirKorea PM2.5 RF, we can infer continuous 24-h 2011-2022 PM2.5 in 
the study domain at 2×2 km2 resolution. We train a GOCI PM2.5 RF on all predictor variables in Table 1 
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for which we have gap-free coverage. The GOCI PM2.5 RF includes as its target all PM2.5 measurements 
from national networks, supplemented by PM2.5 from the US embassy and consulates in China and by 260 
the pre-2015 PM2.5 inferred in South Korea by the AirKorea PM2.5 RF. 

We find that using year as a predictor variable substantially improves the GOCI PM2.5 RF fit, as 
its inclusion avoids an artificially large drop in PM2.5 concentrations from the 2020 to 2021-2022 
period, corresponding with the switch from the GOCI I instrument to GOCI II (section 2.1). However, 
in China prior to the 2014 start of surface network data, the use of year as a predictor is problematic 265 
because in that period PM2.5 is only available from the US embassy and consulates which is too sparse. 
To solve this problem, we train a separate China-rebalanced GOCI PM2.5 RF without year as a covariate 
and stopping in 2020 to avoid the GOCI II bias. In the China-rebalanced GOCI PM2.5 RF, we also apply 
training data weights to increase the penalty to the RF if the US embassy and consulate PM2.5 are poorly 
modeled prior to 2014. We use the output of the China-rebalanced GOCI PM2.5 RF to overwrite the 270 
GOCI PM2.5 RF output prior to May 2014 in China. 

Figure 4 compares 24-h and annual mean PM2.5 network observations to predictions from the 
GOCI PM2.5 RF for sites in 2×2 km2 grid cells withheld from training. Annual mean values are obtained 
by averaging the 24-h predictions. We find using a ten-fold crossvalidation that our prediction captures 
86% of the observed 24-h variance (R! = 0.86) and 95% of annual (R! = 0.95). Overall mean bias is 275 
only 0.26 μg m-3 but there are tail biases discussed later in this section. Applying the SHAP analysis to a 
random sample of 1% of the training data, we find that whether a grid cell is located in China is the 
most important predictor; this presumably serves as a proxy for the different vertical distribution of 
aerosols in the column relative to South Korea and Japan and also reflects the large dynamic range of 
PM2.5 in China. Boundary layer height and AOD are the most important physical predictors, as would 280 
be expected.  
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Figure 4: Evaluation of the GOCI PM2.5 RF predictions. The top panels evaluate the GOCI PM2.5 RF predictions in the 2011-2022 training 
period at grid cells withheld entirely from training in a ten-fold crossvalidation procedure, aggregated at (a) 24-h and (b) annual resolution. 
The panels show two-dimensional histograms where pixel color corresponds to the count of observation/prediction correspondences within 285 
the corresponding bin, with statistics inset and the identity line shown in black. The bottom panel shows the top ten predictors of GOCI 
PM2.5 ranked by importance by the SHAP analysis. Predictor variable contributions are shown by mean absolute SHAP values and standard 
deviations. 

Figure 5 shows the performance of the GOCI PM2.5 product in the high tail of the distribution 
which is of particular interest for air pollution exposure but is notoriously difficult for RF algorithms to 290 
fit (Zhang and Lu, 2012; Pendergrass et al., 2022). Here, perhaps due to the very large training set, we 
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find that the RF extends the successful fit to the high tail. Averaging data into bins each containing 
0.1% of ordered observations, we find that the observed 24-h 99th percentile of 129 μg m-3 is 
underestimated by 13.5% (annual by 7.6%) in the corresponding GOCI PM2.5 predictions. The observed 
24-h 99.9th percentile of 319 μg m-3 is underestimated by GOCI PM2.5 by 26.5% (annual by 21.0%). 295 
These are relatively good RF performances for such high extremes. 
  

 
Figure 5: High tail of the PM2.5 distribution in China, South Korea, and Japan for 2011-2022.  The figure shows the mean binned percentiles 
of the 24-h and annual PM2.5 concentrations measured at the surface networks, together with the corresponding mean GOCI PM2.5 predictions 300 
sampled at those observed percentiles.  

3 Results and discussion  

Here we present features and insights from our spatially and temporally continuous PM2.5 
product generated from the GOCI AOD data from March 2011 to December 2022 with 2×2 km2 spatial 
resolution and 24-h temporal resolution.  We refer to this product as GOCI PM2.5 in what follows. 305 
Results for annual data are presented starting in 2012 as the first full calendar year of data. 

Figure 6 (top row) shows gap-filled GOCI AODs in 2012, 2017, and 2022. AOD declined 
steadily in East Asia over the lifetime of the GOCI I instrument (2011-2020) and drops sharply in the 
transition to GOCI II (2021-2022) but this is due partly to a low bias in GOCI II AOD. The middle row 
shows the PM2.5 network data, highlighting the spatial limitations as well as the temporal limitations 310 
before 2015. The bottom row shows our GOCI PM2.5 product, highlighting the spatial and temporal 
continuity over the period.  The bias between GOCI I and II does not affect our GOCI PM2.5 product 
because the RF is given information to fit the GOCI data for individual years. The GOCI PM2.5 product 
shows high concentrations at the northeastern tip of China where there are no surface network data. 
Such high concentrations are not predicted in air quality models (Zhai et al., 2021) but have been 315 
previously inferred from MODIS AOD satellite observations (Van Donkelaar et al., 2021). They may be 
due to high ammonia emissions missing from current inventories (Kong et al., 2019), but also could be 
overestimated due to regional biases in vertical distributions of aerosols such as from Russian wildfires.     
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 320 
Figure 6: GOCI gap-filled aerosol optical depth (AOD), PM2.5 from air quality networks, and GOCI PM2.5 obtained by applying a RF 
algorithm to the GOCI AOD data. Data are annual means for 2012 (the first year with complete GOCI data), 2017, and 2022. The gap-
filled AOD data provide continuous 2×2 km2 coverage of eastern China, S. Korea, and Japan for 2011-2022. The PM2.5 network data are 
from individual sites and enlarged for visibility. The S. Korea insets in the middle panels provide greater resolution of network data gaps. 
PM2.5 measurements from the AirKorea network started in 2015, and the S. Korea PM2.5 network data shown for 2012 are from a RF 325 
reconstruction as described in Section 2.3.  
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Figure 7 shows long-term trends of annual GOCI PM2.5 for each country with averaging 
weighted by area, population, and land type (Table 1).  Also shown are the trends from the PM2.5 
networks, including pre-2015 data for Korea from our RF fit of other network data (Section 2.3). The 
GOCI PM2.5 trends for the population-weighted average mirror the network trends and extrapolate them 330 
to before the start of the records. Peak concentrations were in 2014 (China) and 2013 (South Korea, 
Japan) and have been decreasing steadily since. The anomalous peak in South Korea PM2.5 in 2019 is 
driven in part by unfavorable winter meteorological conditions (Cha et al., 2023). We find no COVID-
19 anomaly in 2020, except perhaps in South Korea, possibly because emission decreases were offset 
by increase in oxidants producing secondary aerosol (Chang et al., 2020; Huang et al., 2021; Yang et 335 
al., 2022). We also see a narrowing spread with time across land use types and averaging method (areal 
or population-weighted), consistent with more rapid improvements in polluted urban areas. 

 

 
 340 
Figure 7: Trends in annual mean GOCI PM2.5 concentrations averaged over eastern China, South Korea, and Japan for years with complete 
data (2012-2022). Also shown are the trends from the national PM2.5 networks (dashed black lines) averaged over 2×2 km2 grid cells and 
requiring at least 80% of data for a given year. Surface network data in South Korea prior to 2015 are generated from the AirKorea PM2.5 
RF using PM10 and other covariates (Table 1). GOCI PM2.5 are shown as averages weighted by area, population, and land type.   

 345 
 Figure 8 compares our GOCI PM2.5 product for Beijing to the US embassy observations going 
back to 2012, and places them in the context of PM2.5 concentrations in the broader city. GOCI PM2.5 
tracks the observations at the US embassy well, peaking in 2013-2014 and then rapidly decreasing, a 
pattern consistent with the 2012-14 increase in PM2.5 in East China shown in Figure 7.  From the GOCI 
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PM2.5 map we see that the US embassy was in a particularly polluted location in Beijing during the 350 
early part of the record but became more typical of the population-weighted city average after 2015. 
Improvements in PM2.5 air quality in Beijing have been relatively greater than in other urban areas (Zhai 
et al., 2019), as is apparent from Figure 6.  
 

 355 
Figure 8: Annual mean GOCI PM2.5 in Beijing compared with US embassy PM2.5 observations in individual years. The left panels show the 
distribution of PM2.5 in the city of Beijing (centered black outline) and surrounding area, with the location of the US embassy shown as a 
black circle. The right panel shows long-term trends at the US embassy site and averaged within Beijing city limits.   

The long-term record produced in this work provides improved local information on 2011-2022 
trends. Figure 9 shows trends in annual mean PM2.5 concentrations in South Korea derived from a linear 360 
regression applied to the annual GOCI PM2.5 in each 2×2 km2 grid cell, as well as monthly trends in 
Seoul/Incheon starting in March 2011. The first five years of AirKorea PM2.5 records (2015-19) showed 
no decrease in the Seoul metropolitan area (SMA) despite local emissions controls as well as controls 
upwind in China, and an increase in winter (Pendergrass et al., 2022). However, the 2012-2022 record 
shows steady improvements in PM2.5 across the country including the SMA. The lack of trend in the 365 
2015-2019 period in the SMA reflected the brevity of the record, as seen by the addition of the 2011-
2015 years with the AirKorea PM2.5 RF showing a decrease starting in 2013. Winter decrease after 2019 
may have been further driven by a seasonal fine dust management program launched by the government 
of Seoul in 2019 that limits vehicle use, coal-fired power plants, and industrial activity from December 
through March (Ministry of the Environment, 2019; Yonhap News, 2021), but also may show an impact 370 
from COVID-19 lockdowns (Koo et al., 2020). 
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Figure 9: Trends in PM2.5 concentrations in South Korea. Panels in the top row show annual trends for (a) 2015-2019 and (b) 2012-2022. 
The trends are obtained by ordinary linear regression of the annual mean GOCI PM2.5 in each 2×2 km2 grid cell with significant regression 375 
slope (𝒑 < 𝟎. 𝟏𝟎). Grid cells with insignificant trends are plotted in gray. The bottom panel shows population-weighted GOCI PM2.5 
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concentrations in Seoul and Incheon. Lines represent monthly (solid blue line), DJF (black dotted), JJA (black dashed), and annual (black 
solid) mean concentrations. 

Figure 10 expresses the national trends in PM2.5 in terms of population exposure. In China, 
where PM2.5 air quality is worst, we find the greatest improvements for the populations exposed to the 380 
highest pollution, leading to a narrowing spread of exposures across the country that is illustrated by the 
sharpening slope of the cumulative distribution. While in 2014 97% of the population in China within 
the GOCI domain was exposed to annual PM2.5 exceeding the national ambient air quality standard 
(NAAQS; 35 µg m-3), by 2022 the figure declined to 29%. However, over 99% of the population was 
still exposed to annual PM2.5 greater than 15 µg m-3, the NAAQS in Japan and South Korea. In 2022 in 385 
South Korea 92% of the population still was exposed to annual PM2.5 greater than the NAAQS but all 
would have met the pre-2018 NAAQS of 25 µg m-3. Japan was fully compliant with its NAAQS by 
2018 and its air quality has continued to improve since, consistent with an observed shift from urban to 
marine aerosols over the study period (Kobayashi et al., 2023). Across the domain, the maximum to 
which any population is exposed decreases everywhere, which means that no population has been left 390 
behind in the improvements in PM2.5 air quality.  
 

 

Figure 10: Trends in cumulative population exposure in countries within the study domain. The y axis shows the cumulative populations 
exposed to at least the annual PM2.5 level given on the x axis, with year indicated by color. Panel (a) shows Eastern China, (b) South Korea, 395 
and (c) Japan. Note different scales for the different panels. National ambient air quality standards (NAAQS) are shown in the vertical black 
dotted line. 

The 2×2 km2 resolution of our new GOCI PM2.5 product (compared to 6×6 km2 in Pendergrass 
et al. (2022)) improves the representation of urban scale pollution events. This is illustrated in Figure 11 
with a severe event in the SMA on 24–29 May 2016 previously shown by Pendergrass et al. (2022). 400 
Extreme concentrations and local gradients are better represented in the new product. Over the six-day 
period for the shown sites, we find an overall R2 of 0.97 versus observations as compared with 0.77 for 
the 6×6 km2 product in part because the resolution is now sharp enough to individually resolve all sites. 
A two-sample Kolmogorov-Smirnov test indicates that the 6×6 km2 product has a statistically 
significantly different distribution than the observations (𝑝 < 0.001) while the improved 2×2 km2 405 
product is indistinguishable (𝑝 = 0.52). 
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Figure 11: 24 h PM2.5 concentrations during a pollution event in the Seoul Metropolitan Area (24–29 May 2016). Observations from the 
AirKorea surface network (circles) are overlaid on GOCI PM2.5 produced in this work (2×2 km2 grid). Seoul city limits are shown by the 
black outline in the panel center. 410 

4 Conclusions 

We produced a continuous 24-h data set of fine particulate matter (PM2.5) concentrations over East Asia 
at 2×2 km2 resolution for 2011-2022 by training a random forest (RF) machine learning algorithm on 
GOCI I and II geostationary satellite observations of aerosol optical depth (AOD) to predict PM2.5 
observations from surface networks. The resulting GOCI PM2.5 dataset offers high-resolution coverage 415 
of the region over a twelve-year period of rapid change. It improves on our previous GOCI PM2.5 
product (Pendergrass et al., 2022) in spatial resolution, record duration, and RF method. 
 We produced the GOCI PM2.5 data in a three-step process. First, we gap-filled missing GOCI I 
and II AOD retrievals using an RF algorithm trained on covariates including gap size, chemical 
transport model (CTM) output, meteorology, and land use variables. Second, to train on the GOCI I 420 
data starting in March 2011, before the start of PM2.5 monitoring in South Korea (2015), we trained 
another RF to predict 2011-2014 PM2.5 at AirKorea network sites using the pre-2015 data available at 
those sites and most notably PM10. Finally, we used the gap-filled GOCI AOD along with the target 
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PM2.5 set expanded by the inferred 2011-2014 AirKorea PM2.5 and US embassy and consulate data in 
pre-2014 China to train an RF to predict PM2.5 across the study domain.  425 
 The continuous 2011-2022 GOCI PM2.5 record at 2×2 km2 resolution constructed in this manner 
reproduces the PM2.5 network observations with no significant bias and a relative root-mean-square 
error (RRMSE) of 22% for 24-h data and 10% for annual data. Its success extends to the high tail of the 
PM2.5 frequency distribution (severe pollution episodes). It shows that the air quality networks in all 
three countries are representative of population-weighted exposure. The 2012-2022 full-year time series 430 
show PM2.5 peaking in 2014 (China) and 2013 (South Korea and Japan) and then steadily declining 
through the end of 2022 with steepest improvements in the most polluted regions. Population exposure 
over that period decreases for all quantiles of the distributions, implying that no region has been left 
behind in air quality improvement. While the Seoul Metropolitan Area (SMA) does not show a decrease 
over the first five years of the PM2.5 network record (2015-2019), the longer 2012-2022 record shows a 435 
decline consistent with the rest of the country.  

The 2×2 km2 resolution of our GOCI PM2.5 product enables successful representation of the 
fine-scale structure and statistical distribution of concentrations during urban pollution episodes, 
improving significantly on our previous 6×6 km2 product that had excessive smoothing. It should be of 
value for long-term public health studies where continuity of PM2.5 data is essential.   440 
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