Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury

Viral Shah
Harvard University

Shah et al., ES&T, 2021
Standard Br-initiated Hg redox chemistry

Two-step oxidation; aqueous-phase reduction

\[
\begin{align*}
\text{Hg}^0 \xrightarrow{+\text{Br}} \text{BrHg}^+ \\
\text{BrHg}^+ \xrightarrow{+\text{Y}} \text{Hg}^{\text{II}G} \\
\text{Hg}^{\text{II}G} \xrightarrow{h\nu} \text{Hg}^{\text{II}P}
\end{align*}
\]

in clouds & particles in presence of OA

Instantaneous equilibrium

Oxidation by OH and O$_3$ is included in some models, but this has been questioned

(Goodsite et al. 2004; Dibble et al. 2012; Horowitz et al. 2017)
Major developments in Hg chemistry

Gas-phase photolysis of HgI & HgII
Saiz-Lopez et al. (2018; 2019)

Oxidation of Hg0 initiated by OH
Dibble et al. (2019)

New redox reactions of HgI & HgII
Lam et al. (2019); Khiri et al., (2020); Saiz-Lopez et al. (2020)

Experimental constraints on HgII(aq) reduction rate
Saiz-Lopez et al. (2018); Yang et al. (2019)
Major developments in Hg chemistry

Gas-phase photolysis of Hg\(^{I}\) & Hg\(^{II}\)
Saiz-Lopez et al. (2018; 2019)

Oxidation of Hg\(^{0}\) initiated by OH
Dibble et al. (2019)

New redox reactions of Hg\(^{I}\) & Hg\(^{II}\)
Lam et al. (2019); Khiri et al., (2020); Saiz-Lopez et al. (2020)

Experimental constraints on Hg\(^{II}\)(aq) reduction rate
Saiz-Lopez et al. (2018); Yang et al. (2019)
Major developments in Hg chemistry

Gas-phase photolysis of HgI & HgII
Saiz-Lopez et al. (2018; 2019)

Oxidation of Hg0 initiated by OH
Dibble et al. (2019)

New redox reactions of HgI & HgII
Lam et al. (2019); Khiri et al., (2020); Saiz-Lopez et al. (2020)

Experimental constraints on HgII(aq) reduction rate
Saiz-Lopez et al. (2018); Yang et al. (2019)

\[
\text{Hg}^0 + \text{OH} \rightarrow \text{HOHg}^\text{I} + \text{Y}
\]

\[
\text{HOHg}^\text{I} + \text{Y} \rightarrow \text{Hg}^\text{II}
\]

Behaves similar to BrHgI

New rate is 100x slower than previous estimate
Major developments in Hg chemistry

Gas-phase photolysis of HgI & HgII
Saiz-Lopez et al. (2018; 2019)

Oxidation of Hg0 initiated by OH
Dibble et al. (2019)

New redox reactions of HgI & HgII
Lam et al. (2019); Khiri et al., (2020); Saiz-Lopez et al. (2020)

Experimental constraints on HgII(aq) reduction rate
Saiz-Lopez et al. (2018); Yang et al. (2019)
Major developments in Hg chemistry

Gas-phase photolysis of HgI & HgII
Saiz-Lopez et al. (2018; 2019)

Oxidation of Hg0 initiated by OH
Dibble et al. (2019)

New redox reactions of HgI & HgII
Lam et al. (2019); Khiri et al., (2020); Saiz-Lopez et al. (2020)

Experimental constraints on HgII(aq) reduction rate
Saiz-Lopez et al. (2018); Yang et al. (2019)

HgII(aq) photoreduction rate in rainwater

Reduction rate in GEOS-Chem

Measured reduction rates
Effect of new Hg chemistry in a different model

Saiz-Lopez et al., 2020

Run #2: includes most updates ➔ Hg lifetime: 20 months
Run #1: Standard chemistry

Too much Hg in the model

Too little Hg deposition
Main Hg redox pathways in the new mechanism

Improved multiphase chemistry

Aerosol processing

Cloud processing

Hg(II) gas (X=2Cl⁻, etc.)
Global Hg lifetime consistent with observations

Global tropospheric Hg budget

- **Hg^0** (3.9 Gg) → 10.4 → **Hg^{II}** (0.1 Gg)
 - **Hg^{II}X**: 49%
 - **Hg^{II}P**: 22%
 - **Hg^{II}(OH)_2**: 19%
 - **BrHg^{II}OH**: 9%

Tropospheric Hg lifetime: 5.5 months

Masses in Gg
Rates in Gg a^-1
Hg0 is oxidized to HgII by Br and OH at equal rates.
Hg^0 distribution consistent with observations

Surface Hg^0 concentrations

Obs: 167±48
Model: 154±28

Observed spatial variation captured

Zonal distribution of Hg

- **Hg^0**
 - Small vertical gradient as seen in aircraft obs.

- **Hg^{II}**
 - Underestimated
HgII deposition matches the observed patterns.

Wet deposition underestimated.
Conclusions

1. New mechanism includes recent advances in Hg chemistry and captures the important features of Hg observations.

2. Major uncertainties: (i) Br concentrations and Hg\(^0\)+Br rate, (ii) reactions of Hg\(^1\), (iii) Hg\(^{II}\)(aq) speciation and reduction rate.