INDEX

A
Absorption cross-section 139
Accumulation mode, of aerosol 146
Acetaldehyde (CH₃CHO)
 as source of PAN 214
Acetone (CH₃COCH₃)
 as source of HOₓ 224
 as source of PAN 230
Acid fog 257
Acid rain 247–255
 chemical composition 247
 effects on ecosystems 253
Actinic flux 159, 167
Activated complex 155
Adiabatic lapse rate 53
 wet 56
Aerosols 144–152
 definition 5
 accumulation mode 146
 albedo 150
 climatic effects 148
 coagulation 146
 composition 144
 global optical depth 149
 in stratosphere 146
 nucleation 145
 radiative forcing 133, 151
 residence times 153
 size distributions 144
Air
 composition 2
 molecular weight 4, 6
Albedo 122
Alkalinity
 of ocean 95
 of soil 253
Ammonia (NH₃)
 as source of NOₓ 212
 in soil 87
 neutralization of acid rain 251
Angular momentum 42
Antarctic ozone hole 178–186
Antarctic vortex 179, 184
Anticyclone 45
Ar. See Argon
Arctic ozone depletion 185
Argon (Ar)
 accumulation in atmosphere 106
 atmospheric abundance 2
Atmospheric column
 definition 3
Atmospheric composition 2
 measures of 1
 of early atmosphere 85
Atmospheric pressure 12
 barometric law 15
 variation with altitude 14
Atmospheric stability 52–60
Atmospheric transport 40–68
 general circulation 46–50
 geostrophic flow 40–46
 time scales for horizontal transport 50
 time scales for vertical transport 66
 turbulence 60–68
Avogadro’s number 4

B
Barometer 12
Barometric law 17
⁷Be. See Beryllium-7
Beryllium-7 (⁷Be) 153
Bimolecular reaction 155
Biological pump 101
Biomass burning
 as source of CO 205
 as source of NOₓ 212
Biosphere, definition 84
Biradical 160
Blackbody 117
Boundary layer. See PBL, Mixed layer
Box models 23–30, 83
Branching reaction 160, 211
Bromine radicals
 in stratosphere 180, 194
 in troposphere 227
Buoyancy 50

C
Calcium carbonate (CaCO₃)
 and ocean alkalinity 111
 neutralization of acid rain 251, 253
Carbon cycle 93–104
Carbon dioxide (CO₂)
 atmospheric mass balance 93
 biological pump 101
 ocean chemistry 95–97
 rise since preindustrial times 93
 seasonal variation 94
 uptake by biosphere 102, 109
uptake by ocean 98, 111
Carbon monoxide (CO)
 as health hazard 205
 atmospheric concentrations 205, 217
 global budget 204, 220
 lifetime 205
 oxidation mechanism 207
 rise since preindustrial times 218
Carbonate chemistry in ocean 95
Carbonyl sulfide (COS) 146
Carbonyls
 and ozone formation 236
 and PAN formation 213
Centrifugal force 42
CFCs. See Chlorofluorocarbons
CH₂O. See Formaldehyde
CH₃. See Methyl radical
CH₃Br. See Methyl bromide
CH₂Cl₃. See Methylchloroform
CH₃I. See Methyl iodide
CH₂O₂. See Methylperoxy radical
CH₃OOH. See Methylhydroperoxide
CH₄. See Methane
Chain reaction 159
Chapman mechanism 162–169
 Steady-state solution for ozone 164
Chemical reaction
 bimolecular 155
 rate constant 155
 reverse 157
 three-body 155
Chlorine nitrate (CINO₃) 177
Chlorine radicals
 and ozone loss 176
 and polar ozone loss 180
 ClOₓ chemical family 176
 total reactive chlorine (Clₓ) 178
Chlorofluorocarbons (CFCs)
 and stratospheric ozone loss 176
 global warming potential 134
 long-term trends 113
 radiative forcing 133
Climate sensitivity parameter 135
ClINO₃. See Chlorine nitrate
Clouds
 and sulfur chemistry 252
 formation 7, 55
 greenhouse properties 138
ClOₓ. See Chlorine radicals
Clₓ. See Chlorine radicals
CO₂. See Carbon dioxide
CO. See Carbon monoxide
Coagulation (aerosol) 146
Column model 32
Conditional unstability 56
Continuity equation 75–81
 Eulerian form 75
 Lagrangian form 79
 numerical solution in models 77
Convection 53
Convection, wet 56, 72
 and transport to upper troposphere 225
 scavenging of soluble gases 226
 scavenging of water vapor 73
Coriolis force 40
COS. See Carbonyl sulfide
Cyclone 45

D
Dalton’s law 6, 18
Deep water formation 101
Dew point 8
Diffraction 147
Dinitrogen pentoxide (N₂O₅)
 in stratosphere 172, 188
 in troposphere 229
Dipole moment 124
Divergence, flux 76
Dry deposition 22
 of ozone 216
Dust
 as component of coarse aerosol 144
 radiative effect 152, 154

E
Eddy correlation 63
Eddy diffusion coefficient. See Turbulent diffusion coefficient
Effective temperature 119
Einstein’s equation for molecular diffusion 67
Electromagnetic wave 115
Electronic transition 123
Enthalpy 54
Entrainment 32
Equilibrium constant 158
Eulerian model 75
Eutrophication 254

F
Fick’s Law 65
Fine aerosol 144
First-order process 24
Fixation, of nitrogen 87
Formaldehyde (CH₂O) 210
Fossil fuel combustion
and acid rain 251
and the nitrogen cycle 88
as source of CO 205
as source of CO2 94
as source of NOx 211
Friction 45
Friction force 45
Frost point 8, 182

G
Gas constant 4
Gaussian plume 65, 81
GCM. See General circulation model
General circulation 46–50
General circulation model (GCM) 128, 130
Geochemical cycling of elements 83–85
Geostrophic flow 40
Global warming potential (GWP) 133
Gravitational separation of gases 18
Greenhouse effect 113–140
greenhouse gases 124
increase since preindustrial times 113, 133
simple model 126
GWP. See Global warming potential

H
H2. See Hydrogen, molecular
H2O2. See Hydrogen peroxide
H2SO4. See Sulfuric acid
Hadley cell 48
Hadley circulation 48
Half-life. See Lifetime
Haze 9, 148
HCFCs. See Hydrochlorofluorocarbons
HCl. See Hydrogen chloride
He. See Helium
Helium (He)
atmospheric abundance 2
atmospheric residence time 106
Henry’s law constant 95
HFCs. See Hydrofluorocarbons
High (pressure) 45
HNO3. See Nitric acid
HO2. See Hydroperoxy radical
HOx. See Hydrogen oxide radicals
Hydrocarbon-limited regime for ozone production 237
Hydrocarbons
emission trends in United States 239
sources 234
Hydrofluorocarbons (HFCs) and Hydrochlorofluorocarbons (HCFCs)
global warming potentials 134
oxidation in troposphere 36
Hydrogen chloride (HCl) 177
Hydrogen oxide radicals (HOx)
in smog 236
in stratosphere 169
in troposphere 208
Hydrogen peroxide (H2O2)
aqueous-phase oxidation of SO2 252
as sink of HOx 207, 236
scavenging in wet convection 225
Hydrogen, molecular (H2)
atmospheric abundance 2
Hydroperoxy radical (HO2)
in stratosphere 169
in troposphere 207
Hydrosphere, definition 84
Hydroxyl radical (OH)
in stratosphere 169, 199
lifetime 201
methylchloroform proxy 202
titration problem 206, 221
trend since preindustrial times 218
tropospheric concentrations 201, 217

I
Ideal gas law 4
applicability to atmosphere 1
Interhemispheric transport 49
2-box model 37
from seasonal motion of ITCZ 71
Intertropical convergence zone (ITCZ) 46
Inversion. See Temperature inversion
Isoprene (C5H8) 240
ITCZ. See Intertropical convergence zone

J
Jupiter
effective temperature 142

K
40K. See Potassium-40
Kinematic viscosity 61
Kirchhoff’s law 118
85Kr. See Krypton-85
Kr. See Krypton
Krypton (Kr)
atmospheric abundance 2
Krypton-85 (85Kr) 37
L
Lagrangian model 79
Laminar flow 61
Land breeze 20
Lapse rate 53
Latent heat 55
Lead-210 (210Pb) 153
Lifet ime
 definition 23
 e-folding 26
 half-life 26
Lightning
 as source of NOx 88, 212
Lithosphere, definition 84
Low (pressure) 45

M
Mars
 atmospheric composition 85
 effective temperature 142
Mass balance equation 25
Mass concentration 4
Mass of atmosphere 13
Mercury barometer 12
Mesopause 15
Mesosphere 15
Methane (CH₄)
 atmospheric lifetime 204
 calculation of global source 73
 global budget 205
 oxidation mechanism 209
 rise since preindustrial times 113
Methyl bromide (CH₃Br) 106
 atmospheric lifetime 107, 204
 two-box model 108
Methyl iodide (CH₃I) 226
Methyl radical (CH₃) 209
Methylchloroform (CH₃CCl₃) 202
Methylhydroperoxide (CH₃OOH) 209
 as source of HOx 227
Methylperoxy radical (CH₃O₂) 209
Mixed layer 71
 diurnal cycle 59
 oceanic 101
Mixing depth 32, 59
Mixing ratio 1
Mole fraction 1
Molecular diffusion
 and atmospheric transport 68, 74
 and gravitational separation 18
 Fick’s law 65
 variation with altitude 74
Montreal protocol 38, 178, 202

N
N₂. See Nitrogen, molecular
N₂O. See Nitrous oxide
N₂O₅. See Dinitrogen pentoxide
NAT. See Nitric acid trihydrate
Ne. See Neon
Neon (Ne)
 atmospheric abundance 2
Net primary productivity (NPP) 102, 109
NH₃. See Ammonia
Nitrate (NO₃⁻)
 in aerosol 145
 in precipitation 248
 in soils 87
Nitric acid (HNO₃)
 and acid rain 250
 and PSC formation 182
 in antarctic ozone hole 185
 in stratosphere 172
 in troposphere 213
 removal by deposition 213
Nitric acid trihydrate (NAT) 182
Nitrification (microbial) 87
Nitrogen cycle 86–90
 human perturbation 89, 108
Nitrogen fixation 87
Nitrogen oxides (NOₓ)
 chemical family definition 171
 and stratospheric ozone loss 188
 and tropospheric ozone production 208
 concentrations in troposphere 217
 in stratosphere 170
 increase since preindustrial times 218
 N₂O₅ hydrolysis in aerosols 188, 229
 null cycle with ozone 171
 reservoirs, in stratosphere 172
 reservoirs, in troposphere 213
 total reactive nitrogen (NOy) 172
Nitrogen, molecular (N₂)
 atmospheric abundance 2
 control of atmospheric abundance 89
Nitrous oxide (N₂O)
 global budget 175
 global warming potential 133
 greenhouse properties 125
 radiative forcing from 133
 rise since preindustrial times 113
 stratospheric chemistry 173
NO₃⁻. See Nitrate, Nitric acid
NOₓ. See Nitrogen oxides
NOₓ-limited regime for ozone production 237
NPP. See Net primary productivity
Nucleation, of aerosol particles 145
Number density 2
 of air 5

O
O(1D). See Oxygen atom
O(3P). See Oxygen atom
O2. See Oxygen, molecular
O3. See Ozone, stratospheric; Ozone, tropospheric; Ozone, in surface air
Ocean pH 95, 109
Oceanic circulation 100
Odd oxygen (Ox)
 definition 164
 lifetime 166
OH. See Hydroxyl radical
Operator splitting, in models 78
Optical depth 138, 167
Organic acids
 and acid rain 256, 258
Ox. See Odd oxygen
Oxygen atom
 from O2 photolysis 163
 lifetime 165
 O(1D) and O(3P) states 164
 O(1D) production in troposphere 200
Oxygen cycle 90–92
Oxygen, molecular (O2) 90
 as diagnostic of the fate of CO2 110
 atmospheric abundance 2
 cycling with biosphere 90
 cycling with lithosphere 92
Ozone (O3), in surface air 232–243
 chemical production 234
 concentrations in United States 233
 long-term trends in United States 239
Ozone (O3), stratospheric 162–189
 and climate change 141
 antarctic ozone hole 179
 catalytic loss cycles 169–178
 Chapman mechanism 162–169
 concentrations 162
 depletion in arctic 185
 long-term trend at midlatitudes 186
 polar ozone loss 178–186
 shape of ozone layer 168, 190
Ozone (O3), tropospheric
 and climate change 141
 concentrations 217
 dry deposition 217
 global budget 215–217
 increase since preindustrial times 218
 production from CO oxidation 208
 production from methane oxidation 210
 transport from stratosphere 206
 See also Ozone, in surface air
 Ozone production efficiency 241–243

P
PAN. See peroxyacetylnitrinate
Part per billion volume (ppbv) 2
Part per million volume (ppmv) 2
Part per trillion volume (pptv) 2
Partial pressure 6
210Pb. See Lead-210
PBL. See Planetary boundary layer
Peroxyacetylnitrinate (PAN)
 as reservoir for NOx 213, 230
Petagram (Pg) 91
Pg. See Petagram
Phase diagram
 for water 8
 for water-nitric acid mixtures 182
Phase rule 7
Photolysis 158
 rate constants for O2 and O3 167
Photon 115
Photosynthesis 90
Planetary boundary layer (PBL) 57, 71
 time scale for mixing 67
Planetary skin 142
Polar stratospheric clouds (PSCs)
 and ozone loss 181
 composition 182
Potassium-40 (40K) 106
Potential temperature 60
ppbv. See Part per billion volume.
ppmv. See Part per million volume
pptv. See Part per trillion volume
Pressure-gradient force 16, 44
PSCs. See Polar stratospheric clouds
Puff model 30–34

Q
Quantum yield 159
Quasi steady state 27

R
Radiation 115–119
 absorption by aerosols 147
 absorption by gases 123
 actinic flux 159
 blackbody 117
emission spectrum 116
flux 116
flux distribution function 117
scattering by aerosols 146–147
solar 119
terrestrial 120
Radiative forcing 130–136
definition 131
and surface temperature 134
from aerosols 151
from greenhouse gases 133
since preindustrial times 133
Radical 159
Radon-222 (222Rn) 82, 153
Reflection, of radiation 147
Refraction, of radiation 147
Relative humidity 8
Residence time. See Lifetime
Respiration 90
Reynolds number 61
222Rn. See Radon-222
Rotational transition 124
Runaway greenhouse effect 136

S
Scale height
of air 17
of atmospheric species 18, 21
Scattering. See Radiation
Sea breeze 18
Sea salt aerosol 9, 21, 144
Sedimentation, of aerosols 146
SF6. See Sulfur hexafluoride
Sink, definition 23
Smog 232
SO2. See Sulfur dioxide
Soil
as carbon reservoir 103
as source of NOx 212
role in nitrogen cycle 87
Solar activity
and climate change 115
radiation 119
Soot 144, 147
Spectroscopy of gas molecules 123
90Sr. See Strontium-90
Steady state 26
Stefan-Boltzmann constant 117
Stratopause 14
Stratosphere 14
Stratosphere-troposphere exchange 67
two-box model 35
Strontium-90 (90Sr) 35
Subsidence inversion. See Temperature inversion
Sulfur dioxide (SO2)
aqueous-phase oxidation by H2O2 252
aqueous-phase oxidation by ozone 256
emission trends in United States 254
formation of H2SO4 251
gas-phase oxidation by OH 251
sources 251
Sulfur hexafluoride (SF6) 134
Sulfuric acid (H2SO4)
and acid rain 248
as component of fine aerosol 144
in stratosphere 146, 188
production from SO2 251
Supercooled liquid water 8
Surface reservoirs (geochemical cycling) 84

T
Temperature
long-term trend 114
variation with altitude 14
Temperature inversion 55, 56, 71
and air pollution 57, 233
from subsidence 56
Teragram (Tg) 89
Tg. See Teragram
Thermosphere 15
Third body, in three-body reactions 156
Three-body reaction 155
Trade winds 47
Transition probability density (Lagrangian models) 80
Tropopause 14
Troposphere 14
Turbulence 60–68
parameterization 65, 76
turbulent diffusion coefficient 65
turbulent flux 61

U
Ultrafine aerosols 145

V
Venus
atmospheric composition 85
effective temperature 123
runaway greenhouse effect 136
Vibrational transitions 124
Visibility reduction by aerosols 148
Volcanoes
climatic effect 148
role in geochemical cycling 84

W
Water vapor
and runaway greenhouse effect 136
atmospheric abundance 1
in stratosphere 169
partial pressure 6
radiative effect and feedbacks 136
radiative effect of dimer 142
residence time in atmosphere 25
saturation vapor pressure 7
Wet deposition 22
Wien’s law 117