Comparison of GEOS-Chem aerosol optical depth with AERONET and MISR data over the contiguous United States

Shenshen Li,1,2 Michael J. Garay,3 Liangfu Chen,1 Erika Rees,2 and Yang Liu2

Received 8 April 2013; revised 24 September 2013; accepted 25 September 2013.

[1] Aerosol optical properties simulated by the global 3-D tropospheric chemistry and transport model Goddard Earth Observing System (GEOS)-Chem (GC) from 2008 to 2010 over the contiguous United States were evaluated with ground observations from Aerosol Robotic Network (AERONET) sites and aerosol products reported by the Multispectral Imaging Spectroradiometer (MISR). Overall, the correlation coefficient (r) and regression slope between AERONET and GC2° × 2.5° (2° latitude × 2.5° longitude) daily total column aerosol optical depth (AOD) were 0.6 and 0.51, respectively. After using the nested GC0.5° × 0.667° model to control for spatial variability, removing several outliers, and averaging over a monthly timescale, the agreement was significantly improved to an r of 0.84 and a slope of 0.75. Seasonal, hourly, and geographical statistics for GC0.5° × 0.667° and AERONET AODs show a similar data range and variation, with higher mean values in the summer, the evening, and in the eastern U.S. Smaller correlation coefficients are seen in the summer and winter, in the evening, and in the western U.S. To investigate the optical properties of major GC tracers, MISR level 2 aerosol products were used to calculate inorganic aerosol, dust, and absorbing non-dust AOD. Both GC and MISR suggest that on average, inorganic aerosol has the highest AOD (GC: 0.071, MISR: 0.089) nationally, followed by absorbing non-dust species (GC: 0.025, MISR: 0.041), and dust (GC: 0.013, MISR: 0.014). The large discrepancies in our intercomparison are due to GC underestimation of inorganic aerosol levels during all four seasons in the western U.S. and dust during summer in the eastern U.S., along with overestimation of summertime-absorbing non-dust species over the northwestern U.S. These uncertainties are attributed to underestimation of inorganic aerosol emissions in more polluted western regions, the transport of Sahara dust in the summer, misuse of the fire files, MISR retrieval uncertainties in the surface, and choice of aerosol models.

1. Introduction

[2] Aerosols, especially those in the accumulation mode (0.1 μm to about 2.5 μm in diameter), are a major air quality concern as they have been associated with a wide range of adverse health effects including asthma attacks, respiratory and cardiovascular diseases, and premature death [Pope et al., 2009]. Due to their widespread and significant health impacts, ground level accumulation mode aerosols, also known as fine particulate matter (PM2.5, particles with aerodynamic diameters less than 2.5 μm), are considered a criterion of air pollutant and routinely monitored for compliance by a nationwide network operated by the U.S. Environmental Protection Agency and its state and local partners. A recent epidemiological study using historical health records and ground observations in 51 U.S. metropolitan areas showed that a decrease of 10 μg/m3 in annual mean PM2.5 levels was associated with an estimated increase in mean life expectancy of 0.6 year [Pope et al., 2009]. Given its diverse emission profiles and relatively short residence time in the lower troposphere, the spatial distribution of PM2.5 is rather heterogeneous. Existing ground-monitoring networks in North America and part of Europe mostly cover urban centers due to high operating and maintenance costs. For the rest of the world, especially in developing countries with heavy air pollution, routine PM2.5 monitoring is either very sparse or nonexistent. The lack of comprehensive PM2.5 exposure estimates hinders research on its health impacts. During the past decade, researchers have explored the
potential of using satellite-retrieved aerosol properties together with atmospheric Chemical Transport Models (CTMs) to fill in the gaps between costly and sparse ground observations [Liu et al., 2004b; van Donkelaar et al., 2010]. Most recently, using satellite-retrieved aerosol optical depth (AOD) and CTM aerosol simulations, the Global Burden of Disease Study ranked the burden of disease attributable to ambient PM$_{2.5}$ pollution as the ninth highest for both sexes in 2010 among 20 leading risk factors, ahead of other factors such as physical inactivity, diet high in sodium, and high cholesterol [Lim et al., 2012].

CTMs have the advantage of being able to provide information on aerosol mass concentration, composition, and optical properties at regional to global scales with complete temporal and spatial coverage. Model simulations have been widely used to characterize aerosols and their impact on climate change and air quality [Martin et al., 2010]. However, the accuracy of model simulations depends heavily on the quality of meteorological inputs, atmospheric chemistry schemes, and emission inventories. On the other hand, ground-based observations such as those provided by the Aerosol Robotic Network (AERONET) are often considered as the gold standard for the total column aerosol optical properties, but these point measurements have very limited spatial coverage [Holben et al., 1998]. Covering large geographical regions, aerosol products from sensors aboard polar-orbiting satellites provide a limited set of aerosol optical properties but often with higher accuracy at a better spatial resolution than CTM results. Both ground and satellite observations have been used to evaluate the performance of CTMs. For example, Chin et al. [2002] compared the AOD results from the Goddard Chemistry Aerosol Radiation and Transport model with the retrievals from the advanced very high resolution radiometer and the Total Ozone Mapping Spectrometer and showed that the model reproduced most of the prominent features of the satellite data, with an overall agreement within a factor of two.

The analysis presented in this paper focuses on the Goddard Earth Observing System (GEOS)-Chem (GC) model, a widely used global, 3-D CTM designed to study tropospheric ozone and related species, aerosols, mercury, carbon, and biogenic gases [Bey et al., 2001]. GC can estimate the concentration and optical depth of major PM$_{2.5}$ components including sulfate, nitrate, ammonium, black and organic carbon, dust, and sea salt [Fairlie et al., 2007; Jaegle et al., 2011; Park et al., 2004]. Recently, several studies have used GC-simulated aerosol properties and Moderate Resolution Imaging Spectroradiometer (MODIS) radiances to improve the AOD retrieval [Drury et al., 2008; Wang et al., 2010].

In this study, we use GC version 8.3.2 to simulate tracer optical depths at 3 h temporal resolution, 2° latitude × 2.5° longitude horizontal resolutions, and 37 vertical layers (from the surface up to ~20 km) for the time period from 2008 to 2010. Tracer optical depths in each layer are integrated to yield the total column AOD (r), as shown in equation (1):

$$r = \sum_{layer=1}^{37} (\text{OPSO}_4 + \text{MOPD} + \text{OPBC} + \text{OPOC} + \text{OPSSa} + \text{OPSSc})$$

where OPSSa represents inorganic aerosol optical depth including the sulfate, nitrate, ammonium, and other water-soluble aerosols. MOPD is mineral dust optical depth with the effective radii of dust particles ranging from 0.15 μm to 4.0 μm. OPBC and OPOC are black carbon and organic carbon optical depth, respectively. OPSSa and OPSSc are the optical depth of accumulation and coarse mode sea salt aerosol, respectively. These tracer simulations are all based on the Global Aerosol Data Set (GADS), which consists of aerosol optical properties including wavelength-resolved complex refractive indices and estimates of the aerosol size distributions (geometric mean and standard deviation) at different relative humidities. These properties were then input to a Mie code to generate the additional...
parameters, extinction efficiency (Q_{ext}) and effective radius (r_{eff}), necessary for AOD calculations [Martin et al., 2003]:

$$\tau_{\text{tracers}} = \frac{3Q_{ext}M}{4r_{eff}\rho}$$

where M is the column mass loading and ρ is the aerosol density. From equation (2), the two factors that affect GC AOD are the particle mass and the GADS optical properties. The uncertainties in the simulated aerosol mass may be attributed to ground emissions, chemical conversion processes, and meteorological fields (GEOS data). The anthropogenic emissions (SOx, NOx, and CO) in GC version 8.3.2 are based on Emissions Database for Global Atmospheric Research [Olivier et al., 1998]. The sulfate simulation also uses NH3 biofuel and natural source emissions from Global Emissions Inventory Activity [Benkovitz et al., 1996]. The Global Fire Emission Database (GFED) version 2 inventory is used to compute biomass-burning emissions for aerosol species of OC, BC, etc. Biogenic species are emitted following the Model of Emissions of Gases and Aerosols from Nature model inventory [Guenther et al., 2012]. For GADS data, the aerosol optical properties starting with GC version 8.3.1 have been updated to take into account new observations from ground-based aerosol measurements and field campaigns as described in a number of papers [e.g., Drury et al., 2010].

In addition to the global simulations, GC also provides nested grid simulations [Wang et al., 2004] at the native GEOS-5 horizontal resolution of $0.5^\circ \times 0.666^\circ$ for the China/SE Asia region (70°~150° longitude, -10°~52° latitude), North America region (-140°~-70° longitude, 10°~69.5° latitude), and Europe region (-30°~50° longitude, 30°~70° latitude). To produce the nested simulation, the global simulation first needs to run the initial and boundary conditions for all species, then higher-resolution emissions, meteorological data, and the GADS optical properties are used to calculate the AODs within the nested grid. As shown in Figure 1, there are 167 GC2° × 2.5° grid cells and 1180 GC0.5° × 0.666° grid cells over the contiguous U.S. Figure 1 also adds the National Land Cover Database (NLCD) 2006 land cover layer for reference, which is partly linked to the ground emission conditions [Wang et al., 2012].

2.2. AERONET Level 2 Aerosol Product

In the contiguous U.S. during the period from 2008 to 2010, there are 34 AERONET sites with Level 2 (quality assured) data (accessed at http://aeronet.gsfc.nasa.gov). Using the longitude lines at 110°W and 90°W, we divided the contiguous U.S. into eastern, western, and central regions. As shown in Figure 1, there are 11 AERONET sites in the Eastern U.S., many of which are located along the eastern seaboard near the Atlantic coast. There are also 9

![Figure 1. Spatial distribution of GEOS-Chem 2° × 2.5° (blue circles) and 0.5° × 0.666° (nested, black squares) grids in the contiguous United States. Thirty-four AERONET sites containing AOD level 2 data from 2008 to 2010 are shown as red triangles. The NLCD 2006 land cover layer is created by the Multiresolution Land Characteristics consortium (http://www.mrlc.gov/nlcd06_data.php).]
central and 14 western AERONET sites, many of which contain crops or forest-covered regions as defined in the NLCD 2006 land cover data.

AERONET AOD values are recorded by sun photometers every 15 min in seven spectral bands (nominally 340, 380, 440, 500, 670, 870, and 1020 nm). AERONET AODs at 440 nm and 670 nm were interpolated to 550 nm using the Angström exponent (Δ440-670) in order to compare with GC and satellite data. AERONET observations within 3 h windows around five GC time steps (7 A.M., 10 A.M., 1 P.M., 4 P.M., and 7 P.M.) were averaged and matched to the nearest GC grid cells at 2° × 2.5° and 0.5° × 0.666° resolutions, respectively. Daily, monthly, and annual averages were calculated based on matched data. For GC2° × 2.5° validation, AERONET values were over three East Coast stations (Goddard Space Flight Center, MD Science Center, and SERC) and two Central stations (Table Mountain and BSRN BAO Boulder) located in one GC2° × 2.5° grid cell were combined to compare to the corresponding model simulations.

2.3. MISR Component AOD Data

In addition to AERONET observations, satellite data are often used to evaluate a model’s AOD estimations [Sayer et al., 2010]. We chose the MISR product since MISR AOD products have been validated against AERONET observations both around the world [Kahn et al., 2010] and in the contiguous U.S. [Liu et al., 2004a], with a global- and national-retrieved error (Δτ) within the larger of ±0.05 or ±0.2 and ±0.04±0.18, respectively. Furthermore, with the unique multideck design, MISR-retrieved aerosol microphysical properties contain valuable information of particle size and single-scattering albedo. They can also be used to infer aerosol composition together with atmospheric chemistry model simulations [Liu et al., 2009]. The primary deficiency of MISR is the narrow swath of the instrument (~380 km for the nadir-viewing camera) yielding global coverage in 9 days at the equator [Diner et al., 2002]. Nonetheless, MISR provides a reasonable data source to assess model simulation of different tracers on a global scale.

The MISR Level 2 aerosol data (latest version 22) has a spatial resolution of 17.6 km for the same period and geographic location as the GC simulations were downloaded from the NASA Langley Research Center Atmospheric Sciences Data Center (http://cosweb.larc.nasa.gov). Total column AOD is reported in the MISR product in the parameter “RegBestEstimateSpectralOptDepth,” which represents the mean AOD of all mixtures that pass goodness-of-fit tests [Martonchik et al., 1998]. However, additional information about aerosol types is also reported in the product, which can be used to determine the fractional contribution of different aerosol components to the total AOD following the approach of [Liu et al., 2007a, 2007b]. The green-band (558 nm) AOD for each of the 74 mixtures used in the version 22 retrieval is reported in the parameter “OptDepthPerMixture” and whether or not a particular mixture passed the goodness-of-fit tests is indicated by the field “AerRetrSuccFlagPerMixture.” Each mixture is made up of one or more “pure” aerosol components corresponding to inorganic aerosol (components 1, 2, 3, and 6), including sulfate, nitrate, and ammonium, absorbing non-dust species (components 8 and 14, including black carbon, organic carbon, and brown carbon), and dust (components 19 and 21) [Kahn et al., 2010]. The total AOD of each component is calculated using equation (3).

\[\tau_{\text{component}} = \sum_{i=1}^{74} \tau_{\text{mixture,i}} \times \text{Fraction}_{\text{component-i in mixture-j}} \times \text{No. of successful mixtures} \]

where \(\tau_{\text{component}} \) is the AOD of component \(i \), \(\tau_{\text{mixture,j}} \) is the AOD of mixture \(j \), Fraction\(_{\text{component-i in mixture-j}} \) is the contribution of component \(i \) to the total AOD for mixture \(j \), and No. of successful mixtures is the number of successful mixtures, which is reported in the MISR product as “NumSuccAerMixture.” In this approach, MISR (17.6 km × 17.6 km) cloud-free pixels located in one 0.5° × 0.666° GC grid cell were first averaged (called MISRG C hereinafter). Then the GC simulations at 10 A.M. local time, which roughly corresponds to the MISR overpass time, were sampled for the MISRG C swath. Finally, the 3 years of matched data sets were processed at seasonal time scales for the contiguous U.S. Although Liu et al. [2009] showed that this method could successfully simulate the particle concentration such as sulfate aerosol in U.S., two limitations of the current MISR AOD product may also have important impacts on its application. On the one hand, the V22 MISR aerosol climatology lacks certain mixtures such as medium, spherical, absorbing (smoke) particles combined with dust [Kahn et al., 2010]. On the other hand, if many different mixtures successfully pass the retrieval criteria [Liu et al., 2007a], equation (3) might reflect more on aerosol climatology than specific aerosol properties.

3. Results and Discussion

3.1. Validation of GC Column AOD With AERONET Observations

Overall, the numbers of daily mean records from 2008 to 2010 for the 34 AERONET sites over the contiguous U.S. are 11,041 for GC2° × 2.5° (Figure 2a) and 11,906 for GC-nested simulations (Figure 2b), respectively. The number of matched samples between model and ground truth is larger than that in any satellite-only validation study over a similar time period because the CTM can simulate aerosols in all conditions without the limitations of cloud contamination, bright underlying surfaces, or the temporal and spatial constraints of an orbital swath. Linear regression of the GC2° × 2.5° AOD against the AERONET observations yields an r of 0.6, a slope of 0.51, and an intercept of 0.03, which indicates that the GC2° × 2.5° underpredicts AOD values relative to AERONET in most conditions. In addition to the impact of a potentially inaccurate emissions inventory and GADS optical properties that may not adequately represent the true aerosols, the coarse spatial resolution of GC2° × 2.5° simulations may also introduce other uncertainties. For example, when the three East Coast sites are combined, the correlation between AERONET and GC2° × 2.5° (slope:0.52, r:0.64) is better than the comparison for individual sites (slope:0.48, r:0.59). Jiang et al. [2007] found that in comparisons between MISR and AERONET in Beijing, some biases could be attributed to aerosol spatial variability, especially for heavily polluted environments. It is likely that similar biases exist in the comparison between GC2° × 2.5° and
Compared to the GC simulations run with a horizontal resolution of 0.5° × 0.666°, the GC simulations perform more comparable to the standard size of validation domains for satellites, such as a 50 km × 50 km box (5 × 5) for MODIS [Chu et al., 2002] and 52.8 km × 52.8 km (3 × 3) box for MISR [Kahn et al., 2010]. As shown in Figure 2b, the slope improves from 0.51 to 0.63 when using the nested data, which is better able to capture high values of aerosol loading for species with short lifetimes [Yu et al., 2012b]. In addition, AERONET observation is for clear-sky conditions, while at GC grid box, it can be partially cloudy. The higher-resolution nested data are likely to reduce sampling bias such as cloud contamination and other bias. Many of the points where GC underestimates the AOD relative to AERONET (Figure 2b, lower right corner) are from coastal sites (i.e., over southern California and around the Chesapeake Bay) in the summer. Points where GC overestimates the AOD relative to AERONET (Figure 2b, upper left corner) all occur for inland sites in the northwestern portion of the U.S. (i.e., Rimrock, Missoula, and Bozeman). This might indicate that the aerosol conditions in this region are not well characterized by the current emission data, meteorological fields, or GADS optical data. The errors related to different GC components will be further analyzed in the following sections. The regression after removing 25 outliers (inside the boxes in Figure 2b), which make up ~0.2% of the total

Figure 2. Validation of GC AOD at a horizontal resolution of (a) 2° × 2.5° daily mean, (b) 0.5° × 0.666° daily mean, and (c) 0.5° × 0.666° monthly mean using AERONET observations. The linear regression line for all data set is shown as the black line. The linear regression line without few outliers (inside the red box) is shown as the red line. Color bar represents the number of data with those particular ordered pair values.
11,906 samples, has an r of 0.66 and a slope of 0.7. To test the
ability of the GC model for simulating AOD in a longer time-
averaging window, Figure 2c shows the comparison between
GC$_{0.5° \times 0.667°}$ and AERONET monthly mean AOD (note
the change in scale from previous two plots). As expected,
monthly averaging appears to significantly smooth the
model’s instantaneous noise. Three outliers are found in
western and central sites in the summer, because of many
low values for the whole month. After elimination of these
outliers, the correlation and regression both improve further,
yielding an r of 0.75 and a slope of 0.84.

[14] Summary statistics for GC$_{0.5° \times 0.667°}$ and AERONET
values for the entire data set, as well as stratified by season,
hour, and by location, are presented in Table 1. Seasonal
comparison shows that AERONET has a slightly wider range
(0.009–0.814) in AOD values, particularly for high AOD,
when compared to GC estimates (0.007–0.625). AOD values
varied greatly by season for both GC and AERONET; AODs
in the summer (AERONET: 0.152, GC: 0.14) were more
than twice as high as in the winter (AERONET: 0.069, GC: 0.093).
Overall, GC AOD mean values are comparable with
AERONET observations, with a slight overestimation in
the summer and underestimation during other seasons.
However, the mean daily difference between AERONET and GC
was significant in all four seasons, almost amounting to 50% of
the AERONET seasonal mean. The slope, intercept,
and correlation coefficient were better in the spring (slope:0.808,
intercept:0.037, r:0.693) and the fall (slope:0.717, intercept:0.03,
r:0.614) versus the summer (slope:0.465, intercept:0.067,
r:0.493) or the winter (slope:0.682, intercept:0.028, r:0.544).
When considering hourly variations, the daytime (7 A.M. to
4 A.M.) aerosol observations from GC and AERONET have
a similar value range and linear relationship. Although both
AERONET and GC$_{0.5° \times 0.667°}$ show the aerosol pollutants
reaching their peak at 7 P.M. (6 P.M. ~ 8 P.M.), with a mean
AOD of ~0.13, there is a large discrepancy and weak correla-
tion (slope: 0.493, r: 0.476). There are several contributing
variables. First, 68% AERONET measurements around 7 P.M.
are found during summer, in which GC usually shows poor
performance. Second, near-source aerosol concentrations
around peak AOD may also play an important role at
nighttime. Finally, point AERONET measurements do not
represent a large GC grid cell well at 7 P.M. because night-
time atmospheric stability limits aerosol mixing. This is
supported by our observation that the correlation between
GC$_{0.5° \times 2.5°}$ and AERONET is worse (slope: 0.34, r: 0.44).
Geographically, eastern sites generally had higher and more
variable AOD values than central and western sites. Linear
regression analysis shows that the slope between daily
AERONET and GC AODs was the highest over central sites
(0.705) and lowest over western sites (0.414), which means
that GC underestimates AODs especially on heavy air
pollution days in these western regions. Table 1 also indi-
cates that the correlation coefficients in the eastern (0.626)
and central (0.668) sites were better than those in western
sites (0.329). Additional correlation analysis related to
seasonal differences by region is presented in Table 2. Over
the Eastern and Central U.S., GC performs well during spring,
fall, and winter seasons but underestimates the AOD values
in the summer by a factor of ~2. Our results are consistent
with the study of Veehkind et al. [2011], who found that such
discrepancies are most likely due to too strong precipitation
and too low secondary organic aerosols formation in the
model. Over the Western U.S., GC in the spring shows a
relatively comparable agreement against AERONET but has much smaller slopes and correlation coefficients for the other seasons.

3.2. Comparison of GC Component AOD With MISR Retrievals

Figure 3 shows the ground-observed, model-simulated (left column), and satellite-retrieved (right column) AOD distributions. The results presented in Figure 3 indicate that on average, both the model and satellite results yield the highest AOD in summer (GC: 0.124, MISR: 0.164), followed by spring (GC: 0.121, MISR: 0.16), fall (GC: 0.109, MISR: 0.106), and winter (GC: 0.077, MISR: 0.098). Geographically, there are large differences. Model simulations are mainly controlled by emission, transport, and hygroscopic properties of aerosols; high values of AOD are persistently located over relatively populated and polluted regions such as the Eastern U.S. GC AOD in eastern regions is a factor of 2–3 times higher than the AOD in the western region. An obvious line can be found around longitude 100°W at the foothills of the Rocky Mountains (Figure 3, left column), which the model may have made more of a barrier than they actually are. Compared to the ground-based AOD distribution (Figure 3, right column), GC was unable to capture the AERONET aerosol variability, especially for western-polluted regions such as Fresno.

The uncertainties in satellite AOD are usually attributed to surface reflectance estimation, the composition of the assumed aerosols, cloud screening, and so on [Chu et al., 2002]. For example, errors of 0.01 in assumed surface reflectance may lead to errors on the order of 0.1 for MODIS AOD retrieval [Kaufman et al., 1997]. Unlikely traditional sensors such as MODIS, MISR’s nine cameras greatly reduced the impact of surface reflectance uncertainties [Diner et al., 2005]. Even so, Figure 3 indicates that there is an agreement between MISR retrievals and NLCD land cover, which may be due to added noise of bright targets over Western U.S. As shown in Figure 3 (right column), the highest values of AOD (~1) are persistently located over the Great Salt Lake Desert areas covered by white sand, as reported in the study of van Donkelaar et al. [2010]. Nevertheless, other studies have shown that MISR retrieves reliable AODs in dusty regions [Martonchik et al., 2004].

We also examined the MISR product using AERONET data following standard validation methods [Liu et al., 2004a]. Our results are very similar to the previous studies [Chatterjee et al., 2010]. Overall, for the contiguous U.S. during the period from 2008 to 2010, MISR retrievals have a strong correlation to AERONET data ($r = 0.82x + 0.05$, $r = 0.7$). Even in Western U.S., the agreement ($r = 0.89x + 0.06$, $r = 0.63$) is much better than for the GC simulations, which implies that MISR is better able to capture aerosol variability than GC over these regions. However, the MISR AOD retrievals show biases when AOD is very high (greater than ~0.4) [Kahn et al., 2010] or very low [Liu et al., 2004a]. For eastern regions, MISR produces a slight underestimation ($r = 0.81x + 0.03$, $r = 0.84$), especially for higher AODs along the East Coast in the summer (Figure 3d). Liu et al. [2004a] also indicated that in low optical depth situations, MISR AOD retrievals may be biased high. In this analysis, we limited our data to those with column AOD value greater than or equal to 0.05, which reduced the raw data by about 17% (43401/253938 MISR pixels). There was a little change in the AOD distribution in the spring and summer, but the AOD value in the winter and fall when low values are common increased by 23% and 24%, respectively. Therefore, quantitative intercomparison of the model simulations, the satellite retrievals, and the ground truth should be done with caution because the large discrepancies could be due to (1) model uncertainties such as the emission inventory and GADS data; (2) satellite retrieval errors caused by cloud screening, surface reflectance uncertainties, and assumptions in the aerosol model climatology; and (3) sampling difference in both space and time with ground-based data. Nevertheless, such intercomparisons still provide useful information on the strengths and weaknesses of both approaches, and coupling model simulations with the satellite retrievals as was done by Drury et al. [2008] and Wang et al. [2010] has demonstrated improved AOD agreement with AERONET.

To investigate the relative importance of each aerosol type, we also calculated the MISR component AOD using equation (3) to compare with the GC tracers. Figures 4–6 are similar to Figure 3 but represent the seasonal distribution of optical depth of inorganic aerosol, dust, and absorbing non-dust particles, respectively. In Figure 4, both GC and MISR show a large contribution of inorganic aerosol to total AOD, with a national annual mean of 0.071 for GC and 0.089 for MISR. Moreover, the spatial and temporal distribution is similar to Figure 3, which indicates that inorganic aerosol is the most prevalent pollutant in the U.S. High inorganic aerosol polluted areas found in the GC model were concentrated in the Eastern and Central U.S., including Indiana, Illinois, Kentucky, Ohio, Arkansas, and Pennsylvania. These states were reported to emit the highest levels of air pollution in terms of pounds of power plant emissions, based on statistics kept by the Environmental Integrity Project (http://www.environmentalintegrity.org/). Similar to GC, MISR also shows heavy inorganic aerosol distribution in these states, but with relatively lower AOD in summer, fall, and winter. On the other hand, MISR’s retrieved inorganic AOD over most western regions is higher than GC in all four seasons. One possible reason could be MISR’s ability to distinguish different aerosol mixtures from one another. Following the method of Liu et al. [2007a], we produced statistics using 3 years of

Table 2. Statistics for the Seasonal Correlations Between AERONET and GC AOD by Region

<table>
<thead>
<tr>
<th>Season</th>
<th>East</th>
<th>Central</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope Intercept</td>
<td>r</td>
<td>Slope Intercept</td>
</tr>
<tr>
<td>Spring</td>
<td>0.757</td>
<td>0.078</td>
<td>0.656</td>
</tr>
<tr>
<td>Summer</td>
<td>0.481</td>
<td>0.101</td>
<td>0.547</td>
</tr>
<tr>
<td>Fall</td>
<td>1.198</td>
<td>0.031</td>
<td>0.668</td>
</tr>
<tr>
<td>Winter</td>
<td>0.874</td>
<td>0.047</td>
<td>0.617</td>
</tr>
</tbody>
</table>

LI ET AL.: GEOS-CHEM SIMULATED AOD VALIDATION
MISR data over 34 AERONET sites. Although the version 22 product is able to distinguish non-dust particles from dust particles with an error of approximately 4%, there is still 15% uncertainty for distinguishing the non-light-absorbing (inorganic) and light-absorbing (absorbing non-dust) aerosols, consistent with previous sensitivity studies [Liu et al., 2007a]. Nevertheless, high inorganic AOD values seen in California and southern Texas in the MISR data better match populated

Figure 3. Distributions of seasonal average AOD at 550 nm from 2008 to 2010 in (a, b) spring, (c, d) summer, (e, f) fall, and (g, h) winter. (left column) GC simulations are temporally and spatially matched with (right column) MISR cloud-free conditions. AERONET AOD distributions are superposed on the MISR maps.
regions with heavy fossil fuel usage. GC was unable to capture the inorganic aerosol pollution over the Western U.S. It may be caused by the rapid aerosol sink in the GC model due to too strong precipitation [Veefkind et al., 2011]. When assessing the GC-AERONET validation (section 3.1), the above findings indicate that the substantial underestimation seen in the GC inorganic AOD distribution may be explained to a large extent by the low bias (Figure 2b) introduced in the Western U.S., especially for heavily polluted summer days. [19] For GC dust, annual average simulated AOD is 0.013, with the largest national mean value of 0.033 in spring, and other seasons are averaging below 0.01. This finding can be
attributed to the transport of Asian fine dust into North America during spring. Yu et al. [2012a] found that approximately 140 Tg of dust was exported from East Asia in 2005. After the trans-Pacific transport, 56 Tg of dust reached the West Coast of North America, although there are large uncertainties on these estimates. The contribution of fine Asian dust becomes weaker in the summer and fall and decreases to 30–50% of the springtime maximum over the Eastern U.S. [Fairlie et al., 2007]. However, mean dust AOD (0.019) from MISR in the spring is significantly lower than GC. This discrepancy is mainly caused by GC overestimation on mineral dust concentrations during the trans-Pacific dust events, which is much higher than the data observed in the Transport and Chemical Evolution over the...
Pacific and Asian Pacific Regional Aerosol Characterization Experiment aircraft campaigns of spring 2001 [Fairlie et al., 2007]. In addition to the imperfect GC dust sources characterization, it lacks MISR’s capability for characterizing nonspherical particles. For regions downwind of dust sources (such as over Southwestern U.S. in the dusty season), the phase functions of spherical and nonspherical particles are both important for the accurate AOD calculation [Wang et al., 2012]. For MISR, lack of very absorbent, plate-like dust particles in the retrieval algorithm may lead to the underestimation of MISR dust AOD [Kalashnikova et al., 2005]. In the summer, the largest difference is found over

Figure 6. Same as Figure 3 but for absorbing non-dust species AOD distribution, note that the color bar is from 0 to 0.1.
the Southeastern U.S. where MISR dust AOD is approximately a factor of 3 to 4 higher than GC simulations. This could be due to the import of Sahara dust, which travels farther south (towards the Amazon) during the spring season and farther north (towards the Caribbean and southern US) during the summer [Ridley et al., 2012]. Our results are consistent with those found by Generoso et al. [2008], who reported that GC-derived attenuated backscatter profiles over the Atlantic were weak compared to the CALIPSO lidar observations, particularly during the summertime. Both findings suggest that dust deposition during plume transport may be too strong in the GC model. Overall, the annual average MISR dust AOD (0.014) is almost equal to GC, accounting for less than 10% of the total AOD, which is lower than the ~25% seen in previous studies [Liu et al., 2004b].

[20] GC-absorbing non-dust aerosol usually appears over the Northwest and East Coast of U.S., which is mainly covered by evergreen, deciduous, and mixed forest. Figure 6 shows that the GC-absorbing non-dust AOD in the West reaches the largest values in summer and the lowest values in winter. This spatial-temporal pattern is consistent with the smoke emission, in which Ichoku et al. [2008] showed that the peak months are from May to October for the Western U.S. However, it is clear that GC overestimates AOD (~1) in several states in the Northwest U.S. (i.e., Idaho and Montana) during summer. Referring back to Figure 2b, it appears that this overestimation also contributed to the high outliers in the AERONET comparison (Figure 2b, top left corner). A possible reason for this result is the GC version 8.3.2 model, which uses the GFED version 2 8 day emissions for the years 2001–2007 (accessed at http://www.globalfiredata.org/) to reproduce the simulations for years 2008–2010. The old fire emission data predicts larger amounts of burned areas, which results in model estimates of higher-absorbing non-dust AOD. For example, the Murphy Complex Fire [Liu et al., 2012a] was the third largest wildfire in the United States in the past 15 years (accessed at the report of National Interagency Fire Center at http://www.nifc.gov/), causing the 2007 fire emissions inventory in this region to be significantly higher than later years. This problem could potentially be solved by using the latest GFED Version 3 monthly biomass inventory [van der Werf et al., 2010]. Given a quantitative relationship between AOD and biomass-burning emissions in each geographic region [Petrenko et al., 2012], we also suggest that GC could couple high-quality satellite AOD such as that from MISR to constrain the biomass-burning source strength. In the East, GC-absorbing non-dust AOD shows little seasonal change except in the summer, most likely because of the dominance of the anthropogenic emissions from diesel and coal combustion, and there is no distinct peak month in the biomass-burning emissions from prescribed fires [Liu, 2004]. The relatively high values in the summer may be because the anthropogenic and fire effluences from Western North America are mostly transported north and east, eventually merging with Eastern U.S. pollution outflow to the Atlantic [Li et al., 2005]. However, the GC-absorbing non-dust AOD is still significantly underestimated compared to MISR in most central and eastern regions in all seasons and resulted in the annual mean values (0.025) that are much lower than MISR (0.041). There are several possible reasons for this discrepancy. First, the aerosol model used in the MISR component AOD calculation may be inappropriate. We used components 8 and 14 for absorbing non-dust species, which also includes some inorganic and sea salt fine particles, according the definition of these MISR components [Kahn et al., 2010]. As mentioned before, this assumption is likely to cause higher-absorbing non-dust and lower inorganic aerosol levels (Figure 4, right column). Second, as opposed to the large wildfires in the western U.S., the smaller prescribed fires are often underrepresented in the emission inventories [Wang et al., 2007]. Third, because the black carbon simulation is sensitive to the smoke injection height but the GC model does not use constraints on the injection height, this will decrease the black carbon column in Eastern U.S. by 10% to 20% [Chen et al., 2009]. Finally, the presence of elevated aerosol layers from long-range transport, such as the biomass-burning outflow across the Gulf of Mexico [Wang et al., 2009], may be detected by MISR but not represented in the model.

4. Conclusions

[21] In this study, the GC AOD of total column and main tracers over the contiguous U.S. from 2008 to 2010 were compared using data from 34 AERONET sites and MISR satellite retrievals. Data are compared using 3 h temporal averages for AERONET, nearest GC-AERONET points, and 0.5° × 0.667° surrounding averaged retrievals for MISR. A linear regression analysis, using GC2° × 2.5° AOD as the response, yielded a slope of 0.51 and intercept of 0.03, suggesting that GC2° × 2.5° may underestimate AERONET AOD, especially at high values. After applying a GC0.5° × 0.667° nested model to control the spatial variability, eliminating several outliers, and averaging instantaneous values in a sustained duration to smooth noise, we achieved the result with a slope of 0.84 and an r of 0.75. Together, the above findings indicate the agreement between the model and ground-based measurements could be improved using higher spatial and longer temporal resolution data. Summary statistics for GC0.5° × 0.667° and AERONET values stratified temporally and geographically show that (1) overall, the data range (min, max) and mean values of the entire GC0.5° × 0.667° are strongly correlated with AERONET AOD; (2) on seasonal average, summer AODs are more than twice as high as in the winter, with both seasons having worse agreement (lower r and slope) than spring and fall against AERONET; (3) for hourly data, the air mass loading peaked in the evening but with weak correlation due to stable atmosphere; and (4) geographically, eastern and central regions have higher AOD values and better regressions than the western sites.

[22] Using the method of Liu et al. [2009], we further calculated the optical depth of individual aerosol types from MISR to perform large-scale comparisons. Both GC and MISR results show that the contiguous U.S. is dominated by inorganic aerosol, followed by absorbing non-dust species, then dust. However, there are large geographical and seasonal differences among these aerosol types. GC significantly underestimates inorganic aerosol levels throughout the year in the Western U.S., as well as dust levels during summer in the Eastern U.S., but overestimates summer-absorbing non-dust species over the northwest compared to the MISR retrievals. These discrepancies may be caused...
by (1) the GC uncertainties associated with the simulation of aerosol mass, such as local inorganic aerosol emissions, fire events, and dust transport; (2) MISR retrieval errors due to the bright surface reflectance over Western U.S. and inappropriate optical properties used for the absorbing non-dust aerosol; and (3) the impact of GADS aerosol optical properties (hygroscopic factors, complex refractive indices, and size distributions) and meteorological fields (GEOS data), which are not analyzed in this approach. Though large uncertainties exist in the quantitative comparison between satellite-driven and model-simulated AOD, this study provides useful information on the strengths and weaknesses of both.

[21] Acknowledgments. This work was supported by the National Science Foundation of China for Young Scholar (grant 41101400) and the Key Program (grant 41130528) and the principal investigators (PI) and their staff for establishing and maintaining the AERONET sites used in this investigation. The work of Shenshen Li and Yang Liu is partially supported by the MISR science team at the Jet Propulsion Laboratory led by David Diner (subcontract 1363692) and by NASA Applied Science Program Imagery by John Haynes (grant NNX07AF52G and PI Y. Liu). Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We acknowledge the technical support of Zhongtian Wang and Meng Fan.

References

Author Query Form

Journal: Journal of Geophysical Research: Atmospheres
Article: jgrd_50867

Dear Author,

During the copyediting of your paper, the following queries arose. Please respond to these by annotating your proofs with the necessary changes/additions.

- If you intend to annotate your proof electronically, please refer to the E-annotation guidelines.
- If you intend to annotate your proof by means of hard-copy mark-up, please refer to the proof mark-up symbols guidelines.

If manually writing corrections on your proof and returning it by fax, do not write too close to the edge of the paper. Please remember that illegible mark-ups may delay publication.

Whether you opt for hard-copy or electronic annotation of your proofs, we recommend that you provide additional clarification of answers to queries by entering your answers on the query sheet, in addition to the text mark-up.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Query</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AUTHOR: Please check that authors and their affiliations are correct.</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>AUTHOR: The citation “Yu et al., 2012” (original) has been changed to “Yu et al., 2012a”. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>AUTHOR: Is "Goddard Space Flight Center" the correct definition for "GSFC"? Please check.</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>AUTHOR: Please define "SERC" since it only occurs once in this paper.</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>AUTHOR: “Diner et al., 2002” is cited in text but not given in the reference list. Please provide details in the list or delete the citation from the text.</td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>AUTHOR: “Martonchik et al., 1998” is cited in text but not given in the reference list. Please provide details in the list or delete the citation from the text.</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>AUTHOR: The citation “Yu et al., 2012” (original) has been changed to “Yu et al., 2012b”. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q8</td>
<td>AUTHOR: Figures 1b and 1c here have been changed to Figures 2b and 2c, respectively, since Figure 1 has no subpanels. Please check.</td>
<td></td>
</tr>
<tr>
<td>Q9</td>
<td>AUTHOR: “Kaufman et al., 1997” is cited in text but not given in the reference list. Please provide details in the list or delete the citation from the text.</td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>AUTHOR: Is "Transport and Chemical Evolution over the Pacific” the correct definition for "TRACE-P"? Please check and change if incorrect.</td>
<td></td>
</tr>
<tr>
<td>Q11</td>
<td>AUTHOR: Is "Asian Pacific Regional Aerosol Characterization Experiment” the correct definition for "ACE-Asia”? Please check and change if incorrect.</td>
<td></td>
</tr>
<tr>
<td>Q12</td>
<td>AUTHOR: The citation “Idaho, 2007” (original) has been changed to “Yu et al., 2012a”. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q13</td>
<td>AUTHOR: Does "PI" here stand for "principal investigators"? Please check.</td>
<td></td>
</tr>
<tr>
<td>Q14</td>
<td>AUTHOR: Please check the group name for Reference Petrenko et al., 2012 if captured correctly.</td>
<td></td>
</tr>
</tbody>
</table>
USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 7.0 or above). (Note that this document uses screenshots from Adobe Reader X)
The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/uk/reader/

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

- Annotations

1. **Replace (Ins) Tool** – for replacing text.
 - Strikes a line through text and opens up a text box where replacement text can be entered.
 - Highlight a word or sentence.
 - Click on the Replace (Ins) icon in the Annotations section.
 - Type the replacement text into the blue box that appears.

2. **Strikethrough (Del) Tool** – for deleting text.
 - Strikethrough (Del) Tool: Strikes a red line through text that is to be deleted.
 - Highlight a word or sentence.
 - Click on the Strikethrough (Del) icon in the Annotations section.

3. **Add note to text Tool** – for highlighting a section to be changed to bold or italic.
 - Highlights text in yellow and opens up a text box where comments can be entered.
 - Highlight the relevant section of text.
 - Click on the Add note to text icon in the Annotations section.
 - Type instruction on what should be changed regarding the text into the yellow box that appears.

4. **Add sticky note Tool** – for making notes at specific points in the text.
 - Marks a point in the proof where a comment needs to be highlighted.
 - Click on the Add sticky note icon in the Annotations section.
 - Click at the point in the proof where the comment should be inserted.
 - Type the comment into the yellow box that appears.
5. Attach File Tool – for inserting large amounts of text or replacement figures.

How to use it
- Click on the Attach File icon in the Annotations section.
- Click on the proof to where you’d like the attached file to be linked.
- Select the file to be attached from your computer or network.
- Select the colour and type of icon that will appear in the proof. Click OK.

6. Add stamp Tool – for approving a proof if no corrections are required.

How to use it
- Click on the Add stamp icon in the Annotations section.
- Select the stamp you want to use. (The Approved stamp is usually available directly in the menu that appears).
- Click on the proof where you’d like the stamp to appear. (Where a proof is to be approved as it is, this would normally be on the first page).

7. Drawing Markups Tools – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks.

How to use it
- Click on one of the shapes in the Drawing Markups section.
- Click on the proof at the relevant point and draw the selected shape with the cursor.
- To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
- Double click on the shape and type any text in the red box that appears.

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options:
Additional reprint and journal issue purchases

Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: https://caesar.sheridan.com/reprints/redir.php?pub=10089&acro=JGRD

Corresponding authors are invited to inform their co-authors of the reprint options available.

Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsus@wiley.com

For information about ‘Pay-Per-View and Article Select’ click on the following link: http://wileyonlinelibrary.com/ppv