An Ensemble Learning Approach for Estimating High Spatiotemporal Resolution of Ground-Level Ozone in the Contiguous United States

Weerber J. Requia,*, Qian Di, Rachel Silvern, James T. Kelly, Petros Koutrakis, Loretta J. Mickley, Melissa P. Sulprizio, Heresh Amini, Liuhua Shi, and Joel Schwartz

ABSTRACT: In this paper, we integrated multiple types of predictor variables and three types of machine learners (neural network, random forest, and gradient boosting) into a geographically weighted ensemble model to estimate the daily maximum 8 h O$_3$ with high resolution over both space (at 1 km \times 1 km grid cells covering the contiguous United States) and time (daily estimates between 2000 and 2016). We further quantify monthly model uncertainty for our 1 km \times 1 km gridded domain. The results demonstrate high overall model performance with an average cross-validated R^2 (coefficient of determination) against observations of 0.90 and 0.86 for annual averages. Overall, the model performance of the three machine learning algorithms was quite similar. The overall model performance from the ensemble model outperformed those from any single algorithm. The East North Central region of the United States had the highest R^2, 0.93, and performance was weakest for the western mountainous regions (R^2 of 0.86) and New England (R^2 of 0.87). For the cross validation by season, our model had the best performance during summer with an R^2 of 0.88.

This study can be useful for the environmental health community to more accurately estimate the health impacts of O$_3$ over space and time, especially in health studies at an intra-urban scale.

1. INTRODUCTION

Ground-level ozone (O$_3$) primarily results from photochemical reactions involving nitrogen oxides (NO$_x$ = NO + NO$_2$) and volatile organic compounds (VOCs) in the presence of sunlight.1 The spatial variation of O$_3$ concentration is strongly linked to activity associated with land use and population. Emissions from motor vehicles, industrial sources, and electric generation are major sources of anthropogenic O$_3$ precursors.2,3 The formation of O$_3$ also depends on natural sources, which include biogenic (e.g., isoprene from vegetation) and abiotic (biomass burning and geogenic sources) emissions.4 NO$_x$ released from fertilized soils can also play an important role in the formation of O$_3$. In urban areas, VOCs are often the limiting precursors for O$_3$ formation. In contrast, in non-urban areas, O$_3$ formation is often limited by NO$_x$ availability. The intra-urban variations of O$_3$ levels are also linked to the geographic variation in sources of O$_3$ precursors and oxidizing compounds.6,7

Besides the variation of O$_3$ precursors, rates of O$_3$ formation are also sensitive to meteorological conditions, such as the temperature and solar radiation. Previous studies have shown that variations in O$_3$ trends are associated with differences in characteristic local weather patterns.8,9 Low precipitation, high temperature, and low wind speed favor O$_3$ formation and buildup.10,11 Relative humidity is negatively correlated with O$_3$.

Received: March 22, 2020
Revised: July 27, 2020
Accepted: August 18, 2020
Published: August 18, 2020
because cloudy days with precipitation tend to have lower actinic flux than clear sky days and therefore less photochemical activity. In addition, dry atmospheric conditions can cause drought stress and suppress stomatal O₃ uptake and contribute to the high warm-season O₃ level.12

Understanding the mechanisms related to O₃ formation is crucial for emissions control and implementing public health policies as well as for modeling ozone concentrations. A large number of studies have demonstrated that O₃ is a major public health risk, affecting respiratory,13−15 cardiovascular,16−25 and nervous systems36,37 as well as mortality. For example, Anenberg et al. estimated that surface O₃ is responsible for 0.7 ± 0.3 million deaths worldwide due to respiratory disease annually.21 In the United States, Fann et al. estimated 47,000 O₃-related deaths based solely on acute health effects.22 Other evidence suggests that O₃ modifies the health impacts of other air pollutants, including PM2.5,23−25

Modeling approaches to estimate O₃ concentrations over space and time have been developed to improve exposure characterization for health studies. These O₃ exposure models fall into several classes, including chemical transport model simulations, geostatistical interpolation approaches,9,26−27 land use regression models,28−29 source dispersion models,30 models based on remote sensing technology,31,32 ensemble-based forecast,33 and, most recently, machine learning models.34−37 These various modeling approaches have different strengths and limitations that result in varying levels of exposure misclassification. The great advantage of machine learning is that these models can represent any kind of nonlinear relationship in which the variables from different data sources have complex interactions. This advantage is important for air pollution characterization, especially to model O₃ concentration, due to the complex nonlinear atmospheric mechanisms governing O₃ formation and transport.

Recently, ensemble learning approaches that integrate different techniques (e.g., land use, geostatistical, remote sensing, and source dispersion models) as well as different machine learning algorithms have been applied to improve air pollution characterization.34,38−40 Environmental scientists interested in the health effects of air pollution, including those of O₃, have explored exposure models based on these ensemble approaches in order to minimize residual exposure measurement errors (i.e., misclassification error) and improve the accuracy of epidemiological studies. However, ensemble-based models of air pollution are still very limited in terms of the following criteria: (i) spatial or temporal resolution, (ii) set of predictor variables, (iii) machine learning approaches, and (iv) model uncertainty. For example, most studies focus only on small regions,40,41 or annual averages; they also account for only a restricted number of predictors, including land use terms and remote-sensing data42 or consider only one machine learning method.34,43 Finally, most studies do not quantify the spatiotemporal variation in uncertainty in the predictions, which is important for assessing exposure measurement error. Several studies have addressed these limitations for some pollutants, including PM2.5 and NO₂ but not yet for O₃. Our research addresses these gaps by integrating multiple types of predictor variables (including 169 variables representing land use, chemical transport simulations, weather, and remote-sensing data) and three types of machine learners into an ensemble model to estimate the daily maximum 8 h O₃ with high resolution over space (at 1 km × 1 km grid cells covering the contiguous United States) and time (daily estimates between 2000 and 2016). We further quantify the spatial and temporal pattern of model uncertainty by predicting the monthly standard deviation of the difference between daily monitored and predicted O₃ levels in 1 km × 1 km grid cells.

2. MATERIALS AND METHODS

2.1. Study Design. This study was conducted in seven stages. First, we accessed multiple datasets that included daily maximum 8 h O₃ concentrations at sites across the United States and the predictor variables for O₃, which included weather parameters, gridded output from chemical transport models, remote-sensing observations, and land use variables. We obtained these data for the period between 2000 and 2016. The spatial area included the continental United States (the 48 contiguous states and Washington D.C.). In the second stage, we applied GIS techniques to create a single data frame with O₃ observations and predictor variables at O₃ monitor locations and at 1 km² grid cells over the United States. In the third stage, we applied one machine learning algorithm to fill in missing values in the predictor variables consolidated in the previous stage. For model training in the fourth stage, we applied three machine learning algorithms to estimate the O₃ concentration at observation site locations. In the fifth stage, we made daily (2000−2016) predictions of the O₃ concentration at a 1 km² spatial resolution over the United States using the same grid cells as consolidated in the second stage. We made three predictions, including one prediction for each one of the three machine learning models applied in the fourth stage. In the sixth stage, we employed an ensemble model to blend the O₃ estimations from the previous stage, which resulted in the final prediction. Finally, in the seventh stage, we performed cross validation on withheld monitors to estimate the model performance from each of three machine learners separately and the ensemble model. We estimated model uncertainty by predicting the monthly standard deviation at 1 km² grid cells based on the difference between model predictions and observations at site locations. Figure S1 shows the flowchart of our study design. In Section S2, we provide details on the first stage (data source). Details on stages 2−7 are provided below.

2.2. Consolidation of the Dataset (Second Stage). We used GIS techniques to consolidate all the data obtained, which includes 169 predictor variables, covering the contiguous United States in 6205 days (daily information during 2000−2016). In Table S1, we present the list of these predictors. The daily maximum 8 h O₃ concentration and predictors used for training were consolidated at O₃ monitoring site locations, and the predictors were consolidated at the 1 km² grid cells over the United States. Our study area encompassed 11,196,911 grid cells with a spatial resolution of 1 km × 1 km. Due to the high spatiotemporal resolution defined in our study, the size of the 169 predictor variables consolidated at grid cells was computationally intensive. The data has approximately 20 TB of information.

2.3. Machine Learning Approaches. We used three machine learning models in this study, including a neural network, random forest, and gradient boosting. All three models were used to attempt to model the complex relationship between the dependent variable and predictor variables with different algorithms. The details of these machine learning models can be found in the work of Bishop.35 Briefly, random forests and gradient boosting are methods that use regression trees. In a regression tree, one first
finds the best predictor and best break point for that predictor such that dividing the data at that break point explains the most variation of the outcome available for such a division. The process is repeated producing a series of splits in the subsequent subsets of the data. In a random forest, many (generally over 100) bootstrap samples of the data are chosen and separate trees are fit in each sample. The predictions from the many trees (the forest) are then averaged to generate the prediction in order to improve the performance by handling overfitting, reducing variance, and using parallel (independent) classifiers.46 In gradient boosting, a tree with few splits is fit and then another tree is fit to the residuals of the outcome. To allow more predictors to contribute, only part of the prediction of the second tree is added to the first and the process is repeated. The key parameters in such approaches are the number of trees, the number of breaks in each tree, the fraction of the prediction of the next tree that is used (gradient boosting), the fraction of the covariates considered, etc. A neural network fits a model by taking the predictors as inputs into artificial neurons that, like real neurons, fire when the weighted inputs reach a certain level. Their output goes into other layers of neurons, and ultimately, to a single prediction of output. Key parameters of such models are the number of layers and number of neurons. Importantly, given the large number of variables, all three methods use withheld monitoring sites as validation samples to avoid overfitting, and all three incorporate methods give little or no weight to some variables. In the neural network, the weights given to input variables’ impacts on the hidden neurons can be near zero. In addition, we incorporated a lasso penalty into the neural network (lasso regularization to the neural network cost function) that can force variable weights to zero. Neural networks are able to model nonlinear relationship. It is very useful for modeling air pollution in which the underlying atmospheric dynamics are elusive and variables have complex interactions.45,47 In gradient boosting and random forests, the size of each tree is chosen by cross validation (10% of the data to 1 km grid cells, all predictor variables were available and the process is repeated. The key parameters of such models are the number of layers and number of neurons. Importantly, given the large number of variables, all three methods use withheld monitoring sites as validation samples to avoid overfitting, and all three incorporate methods give little or no weight to some variables. In the neural network, the weights given to input variables’ impacts on the hidden neurons can be near zero. In addition, we incorporated a lasso penalty into the neural network (lasso regularization to the neural network cost function) that can force variable weights to zero. Neural networks are able to model nonlinear relationship. It is very useful for modeling air pollution in which the underlying atmospheric dynamics are elusive and variables have complex interactions.45,47 In gradient boosting and random forests, the size of each tree is chosen by cross validation (10% of the monitors were held out and used for validation, and this step was repeated 10 times), and the shorter the trees, the fewer variables can contribute (this process is described in Section 2.3.2 and illustrated in Table S2).

Given the differences among the machine learning models where the model performance of different algorithms seems to vary by location and concentration,44 there is an interest in hybrid models instead of a single model in which the multiple approaches would complement each other. The combination of the three machine learning models used in our study is described in Section 2.4.

In our study, the random forest algorithm was applied to fill the missing values for predictors (imputation process, third stage). For the model training (fourth stage) and predictions (fifth stage), we used the three machine learning algorithms. In the next sections, we describe these stages.

Finally, the analyses for the three machine algorithms were performed in R by using the H2O package. In S3 we provide the script used in the analyses.

2.3.1. Imputation (Third Stage). Some of the predictors in our study (e.g., satellite measurements, weather variables, and others) presented missing values at some locations and time. To predict O₃ concentrations across the contiguous United States and the entire study period, we used a random forest to fill in the missing values.

The imputation was performed based on variables without missing values to predict each variable with missing values. For example, the aerosol optical depth (AOD) had more than 50% missing values. When AOD data were available, we used a random forest to train the model considering the variables in Table S1, including CMAQ, GEOS-Chem, land-use-type, and meteorological variables (these variables have no missing values) as predictors. Then, we predicted the AOD missing values. As in the main models, the predictors for the imputation model included land use terms averaged over different spatial grids (1 km, 10 km, etc.). The random forest depends on a number of hyperparameters, which we chose as detailed below.

The imputation was performed based on variables without missing values to predict each variable with missing values. For example, the aerosol optical depth (AOD) had more than 50% missing values. When AOD data were available, we used a random forest to train the model considering the variables in Table S1, including CMAQ, GEOS-Chem, land-use-type, and meteorological variables (these variables have no missing values) as predictors. Then, we predicted the AOD missing values. As in the main models, the predictors for the imputation model included land use terms averaged over different spatial grids (1 km, 10 km, etc.). The random forest depends on a number of hyperparameters, which we chose as detailed below.

2.3.2. Model Training (Fourth Stage). After imputing missing values, we standardized the dataset. Considering a variable “X”, data standardization was based on $X_{ij} - X_{\text{mean}} / X_{\text{std}}$ where X_{ij} is the raw data of the variable “X” on day i in the site j and X_{mean} and X_{std} are the mean and standard deviations of variable “X”, respectively.

Using the dataset resulting from the standardization process, we trained the three machine learning models on all input variables standardized at monitor data with parameters of each models selected by a search process. The performance of our machine learning algorithms depends on hyperparameters, which are listed in Table S2. As noted above, these are chosen using a grid search process and a held-out set of validation monitors. For random forests and gradient boosting, these parameters included the depth of the tree, number of trees, subsample of covariates fit to each tree, and learning rate. For neural networks, the hyperparameters included the number of hidden layers, number of neurons per layer, learning rate and number of iterations through the data, and lasso penalty (i.e., L1 regularization). In Table S2, we show the parameters tuned for each machine learning model.

2.4. Predictions (Fifth Stage) and Ensemble Model (Sixth Stage). After filling in missing values and interpolating data to 1 km grid cells, all predictor variables were available across the study area. Then, we used the trained models to predict daily maximum 8 h O₃ concentrations at each 1 km × 1 km grid cell in the contiguous United States for 6205 days (daily information in 2000–2016). The predictions for each grid cell were based on values of predictors in neighboring grid cells. For example, for some land use terms, 10 km averages were used as well as 1 km averages. As a result, we obtained individual predictions for each one of the three machine learners (fifth stage).

To combine the three predictions, we used an ensemble model based on a geographically weighted generalized additive model (GAM). We used a geographically weighted approach to account for the spatially heterogeneous relationship and the
Table 1. Cross-Validation Results by Yeara

<table>
<thead>
<tr>
<th>year</th>
<th>ensemble model</th>
<th>neural network</th>
<th>random forest</th>
<th>gradient boosting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>RMSE (ppb)</td>
<td>intercept</td>
<td>slope</td>
</tr>
<tr>
<td>2000</td>
<td>0.889</td>
<td>5.705</td>
<td>0.088</td>
<td>0.991</td>
</tr>
<tr>
<td>2001</td>
<td>0.892</td>
<td>5.517</td>
<td>0.254</td>
<td>0.992</td>
</tr>
<tr>
<td>2002</td>
<td>0.908</td>
<td>5.375</td>
<td>0.338</td>
<td>0.984</td>
</tr>
<tr>
<td>2003</td>
<td>0.897</td>
<td>5.244</td>
<td>0.126</td>
<td>0.988</td>
</tr>
<tr>
<td>2004</td>
<td>0.889</td>
<td>4.986</td>
<td>0.543</td>
<td>0.982</td>
</tr>
<tr>
<td>2005</td>
<td>0.901</td>
<td>5.090</td>
<td>0.228</td>
<td>0.991</td>
</tr>
<tr>
<td>2006</td>
<td>0.898</td>
<td>4.873</td>
<td>0.357</td>
<td>0.992</td>
</tr>
<tr>
<td>2007</td>
<td>0.903</td>
<td>4.731</td>
<td>0.284</td>
<td>0.998</td>
</tr>
<tr>
<td>2008</td>
<td>0.904</td>
<td>4.447</td>
<td>0.317</td>
<td>0.990</td>
</tr>
<tr>
<td>2009</td>
<td>0.899</td>
<td>4.196</td>
<td>0.032</td>
<td>0.996</td>
</tr>
<tr>
<td>2010</td>
<td>0.891</td>
<td>4.399</td>
<td>0.090</td>
<td>0.990</td>
</tr>
<tr>
<td>2011</td>
<td>0.902</td>
<td>4.296</td>
<td>0.009</td>
<td>0.997</td>
</tr>
<tr>
<td>2012</td>
<td>0.920</td>
<td>4.003</td>
<td>0.339</td>
<td>0.990</td>
</tr>
<tr>
<td>2013</td>
<td>0.907</td>
<td>3.787</td>
<td>1.049</td>
<td>0.973</td>
</tr>
<tr>
<td>2014</td>
<td>0.913</td>
<td>3.585</td>
<td>0.259</td>
<td>0.991</td>
</tr>
<tr>
<td>2015</td>
<td>0.919</td>
<td>3.538</td>
<td>0.447</td>
<td>1.005</td>
</tr>
<tr>
<td>2016</td>
<td>0.906</td>
<td>3.579</td>
<td>0.187</td>
<td>0.989</td>
</tr>
<tr>
<td>overall</td>
<td>0.905</td>
<td>4.668</td>
<td>0.654</td>
<td>0.985</td>
</tr>
</tbody>
</table>

aNote: The slope and intercept were obtained from the linear regression model in which we regressed predicted O$_3$ against monitored O$_3$.

possibility that some learners fit better in particular parts of the country. To capture a better spatial variation of weights given to the different learners across the country, we regressed the monitored values against thin plate splines of latitude and longitude and the interaction of those splines with a spline for the predicted concentrations for each learner. This allows the contribution of each learner in the final O$_3$ estimation to potentially depend on the O$_3$ concentration (i.e., non-linear response) and to have more weight in particular regions of the country. The equation below describes the ensemble model:

$$\hat{O}_3 = f_i (\text{Location}_i, O_{3,nn}) + f_j (\text{Location}_i, O_{3,rf}) + f_k (\text{Location}_i, O_{3,gb})$$

where f_i denotes a thin plate spline for an interaction between location i and the O$_3$ estimation from the neural network (nn) at location i and day j and $O_{3, rf}$ and $O_{3, gb}$ stand for the same but from random forest (rf) and gradient boosting (gb) at location i and day j, respectively.

2.5. Cross Validation (Seventh Stage). We performed individual 10-fold cross validation for each one of the three models applied in this study: neural network, random forest, and gradient boosting. Here, we first divided the monitoring sites into 10 splits, and then we trained the models with 90% of the data and predicted the O$_3$ concentration at the remaining 10% of the sites. The observation predictions at the excluded sample site were then compared. Finally, we assembled O$_3$ predictions from all 10 splits and then calculated R^2 (coefficient of determination), spatial R^2, and temporal R^2.

The cross validation was also performed for different subsets of the dataset, which included a timewise cross validation (for the whole period), cross validation by year, region (nine regions), season (summer, fall, winter, and spring), and population density (quartiles 1–4).

The temporal R^2 was calculated by regressing (using the GAM model) ΔO_3 measured against ΔO_3 predicted where ΔO_3 is the difference between the O$_3$ value at site i at time t and annual mean of O$_3$ at site i. The spatial R^2 was calculated by regressing the annual mean O$_3$ at site i against the annual mean predicted O$_3$ at site i.

Finally, we estimated model uncertainty by calculating the monthly standard deviation of the difference between daily monitored and predicted O$_3$ levels at 1 km \times 1 km grid cells with monitors (sdO_3 where i represents the sites and j is the month). Note that we quantified uncertainty for the monthly mean to increase the number of data points in the standard deviation calculation. Then, we regressed (using GAM) sdO_3 against the following predictors: elevation, surface reflectance, humidity, tree canopy, normalized difference vegetation index (NDVI) (an indicator of green vegetation), developed area coverage from the land use dataset, density of roads, year, and month. We highlight that, if there were more than one monitor in a grid cell, we averaged them to get the grid cell measured and subtracted the grid cell prediction to get a single grid cell residual. For grid cells that have no monitors, we cannot directly estimate the error of prediction. We can approximate this, however, by treating some monitoring locations as if they did not have measurements, training the models on the remaining stations, making the predictions for the held-out monitoring locations, and seeing what error we got. This was the 10-fold cross validation we did. We divided the monitors into 10 groups and held out one successive group in turn, fit the models on the remaining nine groups of monitors, and looked at the prediction error at the held-out group.

3. RESULTS AND DISCUSSION

Table 1 shows the cross-validated R^2 RMSE (square root of the average value of the square of the residual) and slope from the ensemble model by year and for the entire period. For the individual models (neural network, random forest, and gradient boosting), we present only the cross-validated R^2 values were based on 10-fold cross validation. As mentioned above, all R^2 values were based on 10-fold cross validation. The R^2 from the ensemble model varied by year from 0.889 to 0.920 with an average of 0.902, indicating good model performance. The root mean square error (RMSE) decreased significantly over the years. In 2000, the RMSE was 5.705 ppb; in 2016, it decreased to 3.579 ppb. The average
RMSE was 4.550 ppb. Overall, model performance of the three machine learning algorithms was quite close. The overall model performance from the ensemble model outperformed that from any single algorithm.

Tables S2–S4 show the cross-validated results by region, season, and population density, respectively. The model performance varied over the nine regions that we considered in this analysis (Table S3). The East North Central region had the highest R^2 (0.928), and the West North Central region had the lowest RMSE (3.699) among the nine regions. Performance was weakest, but still excellent, for the mountainous regions (0.862) and New England (0.867). For the cross validation by season, our model had the best performance during summer with an R^2 value equal to 0.885 (Table S4). For the cross validation by population density, our results show relatively little variation with the less populous locations (quartile 1, Table S5) having an R^2 equal to 0.888, while in areas with high population density (quartile 4, Table S3), the R^2 was 0.911. The similar performance in more rural areas with fewer monitors is an important result. Overall, the ensemble model stratified by region and season outperformed the three machine learning models. Importantly, the slope of the relationship between O_3 at held-out monitors and predicted at those locations was essentially 1 and the intercept was very close to zero. This indicates that there is no bias in the predictions of the ensemble model.

We used the GAM to regress daily predictions of O_3 from each model against monitored O_3 (Figure S4). We applied a penalized spline function to assess the linearity of the association. The results from the ensemble model show that the relationship between predicted and monitored O_3 values has a good agreement, except for the highest concentration (above 120 ppb). Among the three learners, the neural network presented the best relationship. The underprediction at high concentrations was worse for the random forest and then gradient boosting. Particularly on random forest, its key limitation is that the algorithm cannot predict very high-pollution events outside the range encountered during training. In Figure 1, we show the density scatter plot of the annual O_3 predictions of the ensemble model versus the measured values. Figure S5 presents the density distribution of error estimates (difference between estimated and observed values) from cross validation for each model. There was a difference in the error density among the three learning algorithms with the neural network having the narrowest distribution, the random forest having a slightly wider distribution, and the gradient boosting having the widest distribution. We can see the improvement
with the ensemble model in Figure S4, which shows a higher density of monitors with errors closest to zero.

The relative contribution of predictor variables estimated by each machine learning algorithm is similar (Figure S6). The spatially weighted average of O$_3$ measurements at nearby monitoring locations (inverse distance-weighted O$_3$ measurements at other locations) was the variable with the highest importance for the three models. Other variables identified as important by the three models are the O$_3$ estimates from CMAQ, total column O$_3$ from GEMS, spatiotemporally lagged O$_3$ measurements (1 day lag), and some meteorological variables (Figure S6).

We calculated the daily nationwide averages by averaging daily predictions at all 1 km × 1 km grid cells (Figure S7). Our results show a relatively consistent annual pattern of O$_3$ concentrations from 2000 to 2005. Between 2005 and 2010, there was a cycle of decrease and increase of O$_3$ levels. From 2010 to 2016, our results showed a decrease of O$_3$ concentrations, although the overall decrease was modest at approximately 3 ppb.

The spatial distribution of the predicted levels of the standard deviation of the O$_3$ prediction error (uncertainty model) is illustrated in Figure 2. Overall, the model performed moderately well in the East Coast and Central region (including Texas, Oklahoma, Arkansas, Louisiana, Alabama, and Missouri). A difference in spatial patterns of the uncertainty is evident during the summer and spring seasons. Our results also showed that the model performance improved over the years (a lower standard deviation in 2016 than in 2000, Figure 2). We suggest that the improvement of the data input quality over the years was an important factor to improve the model performance over the years. Regarding the substantial level of uncertainty in the Southeast (especially in 2000), compared to the West, we highlight that more O$_3$ in the East is generated locally, while elsewhere there is more transport of O$_3$ from elsewhere. As emissions decline, background ozone in the Southeast (and East) becomes more important. Therefore, according to Travis et al. 48 and Lin et al., 49 the following are two potential theories about the large error in the Southeast/East: (i) O$_3$ produced locally has a nonlinear dependence on the predictors of which the model is unable to capture well. As emissions declined, local production also declined, and the model showed a better performance in 2008 and 2016. (ii) GEOS-Chem has difficulty capturing O$_3$ in the Southeast, and that difficulty may propagate into our model. The reason for this difficulty has to do with uncertainty in NO$_x$ emissions and vertical mixing.

Figure 3 shows the spatial distribution of the ozone concentration (annual and seasonal) over the United States in three years, 2000, 2008, and 2016. Ozone levels varied significantly by season and region. Overall, the summer O$_3$ concentration decreased in most regions between 2000 and 2016, especially in the Southeast. In contrast, annual O$_3$ concentrations have increased in the Northeast, which is driven by increases in the fall and winter. Fall and winter were the seasons with the lowest O$_3$ concentration in most regions. In Figure S8, we illustrate the downscaled O$_3$ levels in the four highest populated cities in the United States (New York, Los
Angeles, Chicago, and Houston) plus the city of Boston. Notably, O₃ levels increased over time in New York, Chicago, and Boston, primarily by an increased geographic spread of the highest O₃ concentrations.

The three machine algorithms showed good performance in the explained concentration variance of O₃ with R^2 values varying between 0.88 and 0.90 for the analysis stratified by year, 0.85 and 0.92 for the analysis stratified by region, and 0.84 and 0.88 for the analysis stratified by season. Overall, the ensemble model improved the performance of the three machine learning algorithms, especially when we look at the density distribution of error estimates, which is illustrated by Figure S5. The good performance of our models is explained by the range of predictors representing local source emissions and predictors of the formation rate and quenching rate. Incorporating these predictors allowed us to define areas with certain types of pollution regimes based on emissions sources. The characterization of these areas improves the estimation of the spatial heterogeneity in pollution levels, while accounting for spatial autocorrelation (captured by the spatiotemporal terms) among observed values in neighboring areas. Taking that together in the models (emission sources + weather data + chemical transport and remote sensing data + land use and geographical data + temporal terms + spatial autocorrelation), it is possible to minimize within-region variability and maximize between-regional variability prediction values.

Our results showed that the model performs better in the East North Central region, while we observed the weakest performance in New England and the mountainous regions. This spatiotemporal pattern in model performance is similar to that reported in previous studies (Hogrefe et al. and Di et al.). Our model had relatively good performance in areas with high population density. Differences in performance for highly populated areas and less urban regions were also reported previously. Regarding the temporal variation, model performance was best in the summer season, whereas performance was weakest in winter. We suggest that the performance limitations during winter could be related to more heterogeneity and lower O₃ concentrations in winter and because almost 1/3 of the monitors across the United States do not operate in winter. The model performance issues for winter are in agreement with the previous study in the United States (for the period of 2000−2012) based on a hybrid machine learning model using a neural network. Di et al. reported the best performance for the fall season.

In addition to differences in performance over space and time, our three machine learning models do not perform equally well at all concentration levels, especially for high concentration levels (Figure 1). The ensemble model minimized this limitation by combining the three base learners through a non-linear process and fit their contributions to vary over space and concentration. Di et al. found similar results in a recent ensemble modeling study for PM$_{2.5}$. As we mentioned before, an advantage of our machine learning algorithms is the possibility to rank the relative contribution of predictor variables. The variables classified as high importance can be used to create a more parsimonious model and provide insights on factors of importance for predictions.
characterizing O₃ concentrations. Our analyses suggested four main variables with high importance, including the spatially weighted average of O₃ measurements at nearby monitoring locations, CMAQ predictions, GEMS total column O₃ and spatiotemporally lagged O₃ measurements with a one-day lag. Some meteorological variables were also important. These variables, especially the variables representing the spatiotemporal terms, reflect the influence of the regional and temporal sources when predicting local O₃ concentrations with high spatiotemporal resolution. These predictors with high importance improved the ability of our model to minimize within-region variability and maximize between-regional variability of O₃. This is consistent with the studies that have shown substantial contributions with spatiotemporal terms and meteorological variables when predicting ozone concentration.

As illustrated in Figure S7, daily nationwide averages of O₃ decreased somewhat from 2000 to 2016 in the United States. We suggest that this temporal variation reflects a combination of emissions control and meteorological conditions. The U.S. EPA trend report (https://gispub.epa.gov/air/trendsreport/2018/) indicates that the national average of the fourth highest daily maximum 8 h O₃ concentration at monitors decreased from approximately 82 ppb in 2000 to approximately 69 ppb in 2016. In our analysis, we used a smoothed conditional-means function and estimated that the national annual average daily maximum 8 h ozone concentration decreased from approximately 42 ppb in 2000 to 39 ppb in 2016. The difference in trends for our annual metric and the fourth-highest-concentration metric in the EPA report is likely because the downward trends in summer O₃ concentrations are dampened by the relatively flat or increasing trends in winter O₃ concentrations in the annual average. Also, our estimates are for the entire United States on all days, including many areas and periods with low ozone concentrations and limited monitoring, whereas the EPA values are based on monitored-location concentrations alone. The downward temporal trend in O₃ concentrations observed in our analyses was also observed in a previous study.

The impact of meteorological conditions on the O₃ concentration is also illustrated by Figure 3, which shows that summer and spring were the seasons with the highest O₃ levels. This is explained by the photochemical process related to O₃ formation. Primarily, O₃ is formed in the presence of sunlight through photochemical reactions involving NOₓ and VOCs. Overall, low humidity, low precipitation, high temperature, and low wind speed favor O₃ formation. Our results show that the O₃ concentration increased in numerous regions in the United States during the spring season over the study period (Figure 3). Previous studies have reported that the increases in O₃ concentrations in the western United States in spring during our study period may be associated with increased transport of O₃ from Asia associated with increased anthropogenic emissions in Asia (e.g., work of Lin et al.). We suggest that the drier and hotter air between 2000 and 2016 may have also increased O₃ concentrations in the spring season. The increase in ozone in the Northeast region in the fall and winter seasons may reflect the influence of NOₓ emission controls. Previous studies have suggested that areas where O₃ formation is NOₓ-limited in summer may become VOC-limited in winter due to the lower photochemical activity and reduced biogenic VOC emissions in winter. NOₓ emission reductions that have reduced the relatively high summertime O₃ concentrations in the United States may therefore have led to some O₃ increases in winter. Model simulations under conditions of reduced NOₓ emissions are consistent with the interpretation that NOₓ emission reductions could have increased O₃ concentrations in winter and spring in some areas.

Land use is another important factor linked to the spatial variation of O₃ concentrations. In urban areas, traffic emissions and industrial activity are major sources of O₃ precursors and conditions that tend to be NOₓ-saturated. In non-urban areas, sources of O₃ precursors include emissions from vegetation (emissions of isoprene from vegetation), biomass burning, geogenic sources, and fertilized soils and conditions tend to be NOₓ-limited. Large spatial variability also exists in the effects of meteorological conditions on rates of O₃ formation. In Figure S8, we downscaled the O₃ distribution in five major urban areas, including New York, Los Angeles, Chicago, Houston, and Boston. Intra-urban variations of O₃ levels are evident in Figure 10 and are in part due to the spatial variation of emission sources, such as vehicle NOₓ emissions that can suppress O₃ concentrations under NOₓ-saturated conditions.

Our study has some limitations. First, some monitoring sites did not operate during the entire study period, and the spatial distribution of O₃ monitors in the continental United States is not homogeneous. The eastern United States and the western coast are the regions with most of the monitors. Consequently, the model performance varied over space and time, as shown in Table 1. Second, the predictors used in our analyses have different spatial resolutions, including resolutions of 1, 10, and 32 km. To standardize the resolutions at 1 km, we interpolated the original data (when the resolution was different from 1 km). During this interpolation process, there is a residual error. Third, another residual error is related to the leap to predict over the entire domain based on fitting at the limited monitoring locations. We applied this approach based on an assumption defined in our study design. By leaving out monitoring sites, fitting the model with the remaining sites, and comparing the predictions to the observed values, we approximate the prediction error at held-out locations. This relies on the assumption that the monitoring network has sites at enough locations with different characteristics to include the range of characteristics observed in the sites without monitoring. The monitoring network includes urban, sub-urban, and rural locations across the United States including both regulatory sites as well as CASTNET sites. This includes 2279 monitoring locations during the period. Their land use characteristics and climate are predictor variables in the model, so we believe that this is a reasonable assumption. Note that this limitation was imposed by the current monitoring network and additional O₃ monitoring for sparsely covered areas and periods (e.g., winter) would help improve models in the future. Fourth, missing predictor values occurred at some sites and days, especially the predictors based on satellite remote sensing (e.g., AOD had more than 50% missing values; in Table S6, we present the list of variables sorted by percentage of missing values). We performed an imputation process using random forest to fill in the missing values. This process generates residual error as well, which can be interpreted based on the R² of the imputation model. We estimated the R² after comparing variables values before and after imputation at monitoring sites. The average R² was 0.88.

In this study, we applied an ensemble learning approach to estimate high spatiotemporal resolution of O₃ across the

https://dx.doi.org/10.1021/acs.est.0c01791
Environ. Sci. Technol. 2020, 54, 11037−11047
continental United States. The results indicate a high overall model performance with an average R² of 0.902. We have also estimated model uncertainty in the O₃ prediction, which will allow future studies to take into account exposure measurement error. Taken together, the results presented here can be useful for the environmental health community to more accurately estimate the health impacts of O₃ over space and time, especially in health studies at an intra-urban scale.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.0c01791.

Study design, data source, R script used in the machine learning analyses, list of predictor variables, parameters tuned for base learners, cross-validation results by region, cross-validation results by season, cross-validation results by population density, variables sorted by % of missing values, O₃ levels predicted vs measured for the ensemble model and the three machine learning algorithms, O₃ mapping error estimates (ppb) from cross validation for the ensemble model and three machine learning algorithms where error = predicted − observed values at each site, relative contribution of predictor variables for the three machine models, temporal trends of O₃ and spatial distribution of the predicted levels of O₃ by the ensemble model for the major cities in the United States (PDF)

AUTHOR INFORMATION

Corresponding Author

Weebert J. Requia — Department of Environmental Health, Harvard University, TH Chan School of Public Health, Boston, Massachusetts 02115, United States; School of Public Policy and Government, Fundação Getulio Vargas, 72125590, Brazil; orcid.org/0000-0002-7564-3364; Email: weeberb.requia@fgv.br

Authors

Qian Di — Department of Environmental Health, Harvard University, TH Chan School of Public Health, Boston, Massachusetts 02115, United States; Research Center for Public Health, Tsinghua University, Beijing 100084, China; orcid.org/0000-0002-1584-4770

Rachel Silvern — Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States

James T. Kelly — U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Durham, North Carolina 27709, United States

Petros Kourakis — Department of Environmental Health, Harvard University, TH Chan School of Public Health, Boston, Massachusetts 02115, United States

Loretta J. Mickley — Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States

Melissa P. Sulprizio — Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States

Heresh Amini — Department of Environmental Health, Harvard University, TH Chan School of Public Health, Boston, Massachusetts 02115, United States; Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1165, Denmark; orcid.org/0000-0002-4825-1322

Liuhua Shi — Department of Environmental Health, Harvard University, TH Chan School of Public Health, Boston, Massachusetts 02115, United States; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States

Joel Schwartz — Department of Environmental Health, Harvard University, TH Chan School of Public Health, Boston, Massachusetts 02115, United States

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.est.0c01791

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This publication was made possible by U.S. EPA grant nos. RD-834798, RD-835872, and 83587201, HEI grant no. 4953-RFA14-3/16-4, HHS/NIH grant no. UG3OD023282, NIH grant no. P50 AG025688, and HERCULES Center no. P30ES019776. The computations in this paper were run on the Odyssey cluster supported by the FAS Division of Science Research Computing Group at Harvard University. The views expressed in this manuscript are those of the authors alone and do not necessarily reflect the views and policies of the U.S. Environmental Protection Agency.

REFERENCES

(45) Bishop, C. M. Pattern Recognition and Machine Learning; Springer, 2006; Vol. 1.

(56) Requia, W. J.; Jhun, I.; Coull, B. A.; Koutrakis, P. Climate Impact on Ambient PM$_{2.5}$ Elemental Concentration in the United States: A Trend Analysis over the Last 30 Years. Environ. Int. 2019, 131, 104888.

