Tropospheric bromine chemistry: implications for present and pre-industrial ozone and mercury

J. P. Parrella¹, D. J. Jacob¹, Q. Liang⁴, Y. Zhang⁴, L. J. Mickley¹, B. Miller¹, M. J. Evans⁵, X. Yang⁷,8, J. A. Pyle⁷,8, N. Theys⁹, and M. Van Roozendael⁹

[1]{School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA}
[2]{Universities Space Research Association GESTAR, Columbia, MD, USA}
[3]{NASA Goddard Space Flight Center, Greenbelt, MD, USA}
[4]{Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA}
[5]{Department of Chemistry, University of York, York, UK}
[6]{National Centre for Atmospheric Sciences (NCAS), York, UK}
[7]{National Centre for Atmospheric Sciences (NCAS), Cambridge, UK}
[8]{Centre for Atmospheric Sciences, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK}
[9]{Belgian Institute for Space Aeronomy (IASB-BIRA), Brussels, Belgium}

Correspondence to: J. P. Parrella (parrella@fas.harvard.edu)

Abstract

We present a new model for the global tropospheric chemistry of inorganic bromine (Br₉) coupled to oxidant-aerosol chemistry in the GEOS-Chem chemical transport model (CTM). Sources of tropospheric Br₉ include debromination of sea-salt aerosol, photolysis and oxidation of short-lived bromocarbons, and transport from the stratosphere. Comparison to a GOME-2 satellite climatology of tropospheric BrO columns shows that the model can reproduce the observed increase of BrO with latitude, the northern mid-latitudes maximum in
winter, and the Arctic maximum in spring. This successful simulation is contingent on the
HOBr+HBr reaction taking place in aqueous aerosols and ice clouds. Bromine chemistry in
the model decreases tropospheric ozone concentrations by <1-8 ppb (6.5% globally), with the
largest effects in the northern extratropics in spring. The global mean tropospheric OH
concentration decreases by 4%. Inclusion of bromine chemistry improves the ability of global
models (GEOS-Chem and p-TOMCAT) to simulate observed 19th-century ozone and its
seasonality. Bromine effects on tropospheric ozone are comparable in the present-day and
pre-industrial atmospheres so that estimates of anthropogenic radiative forcing are minimally
affected. Br atom concentrations are 40% higher in the pre-industrial atmosphere due to lower
ozone, which would decrease by a factor of 2 the atmospheric lifetime of elemental mercury
against oxidation by Br. This suggests that historical anthropogenic mercury emissions may
have mostly deposited to northern mid-latitudes, enriching the corresponding surface
reservoirs. The persistent rise in background surface ozone at northern mid-latitudes during
the past decades could possibly contribute to the observations of elevated mercury in
subsurface waters of the North Atlantic.

1 Introduction

Bromine radicals (BrOx ≡ Br + BrO) are well-known catalysts for ozone destruction in the
stratosphere (Clerbaux and Cunnold, 2007), and also drive ozone depletion and mercury
oxidation in polar surface air (Simpson et al., 2007; Steffen et al., 2008). In the stratosphere,
bromine radicals originate from photolysis and oxidation of halons and shorter-lived
bromocarbons (Clerbaux and Cunnold, 2007; Law and Sturges, 2007). In polar surface air,
they originate from photochemistry involving sea salt in aerosol or on sea ice (Simpson et al.,
2007; Yang et al., 2008). There is growing evidence that bromine radical chemistry could be
important in the background troposphere as well, with remote sensing observations typically
reporting 0.5 – 2 ppt BrO (Harder et al., 1998; Frieß et al., 1999; Fitzenberger et al., 2000;
Van Roozendael et al., 2002; Richter et al., 2002; Platt and Hönninger, 2003; Hendrick et al.,
2007; Theys et al., 2007, 2011) and aircraft observations reporting several ppt BrO in the free
troposphere (Neuman et al.; Salawitch et al., 2010). Chemical transport model (CTM) studies
show that ~1 ppt BrO in the background troposphere would drive significant decrease of
ozone (von Glasow et al., 2004; Lary, 2005; Yang et al., 2005) and could account for most of
the global oxidation of elemental mercury (Holmes et al., 2006, 2010).
Bromine radical chemistry in the troposphere is initiated by the production of gas-phase inorganic bromine (Br_y) from photolysis and oxidation of short-lived bromocarbons and from debromination of sea-salt aerosol (Yang et al., 2005; Kerkweg et al., 2008). Br_y cycles between BrO_x and non-radical reservoirs (principally HBr, HOBr, BrNO_3, BrNO_2, Br_2) and is eventually lost by deposition. Sea salt aerosol debromination represents the largest source of Br_y to the troposphere, with estimates between 1000 and 6000 Gg Br a$^{-1}$ constrained by the observed Br depletion in sea-salt aerosol relative to seawater composition (R. Sander et al., 2003). This source is mainly in the marine boundary layer where Br_y has a short lifetime against deposition. Bromocarbons emitted by the marine biosphere including CHBr$_3$, CH$_2$Br$_2$, and CH$_3$Br can release Br_y in the free troposphere where its lifetime against deposition is much longer. Global emission estimates are in the range 370 – 1400 Gg Br a$^{-1}$ for CHBr$_3$ and 57 – 280 Gg Br a$^{-1}$ for CH$_2$Br$_2$ (Quack and Wallace, 2003; Warwick et al., 2006; Law and Sturges, 2007; Liang et al., 2010; Pyle et al., 2011). CH$_3$Br also has a large anthropogenic source as an agricultural pesticide (Clerbaux and Cunnold, 2007) and its contribution to tropospheric Br_y production has been estimated at 60 – 80 Gg Br a$^{-1}$ (Yvon-Lewis et al., 2009). Implementation of these sources in the p-TOMCAT CTM together with relatively well-established gas-phase Br_y chemistry yields a background tropospheric BrO concentration ~0.5 ppt, at the low end of observations (Yang et al., 2005).

Here we incorporate a detailed simulation capability for tropospheric bromine coupled to oxidant-aerosol chemistry in the GEOS-Chem CTM (Bey et al., 2001). We evaluate this simulation with a recent space-based climatology of tropospheric BrO by Theys et al. (2011). We discuss the effects on tropospheric ozone and mercury budgets for the present-day and pre-industrial atmospheres. Several studies have pointed out the inability of current CTMs to reproduce the low surface ozone observations from the turn of the 20th century, suggesting that CTM-based estimates of the anthropogenic radiative forcing from tropospheric ozone are too low (Y. Wang and Jacob, 1998; Kiehl et al., 1999; Mickley et al., 2001; Shindell et al., 2003; Lamarque et al., 2005; Horowitz, 2006). As we will show, inclusion of bromine chemistry helps to correct this apparent model deficiency.

2 GEOS-Chem bromine simulation

The GEOS-Chem CTM (www.geos-chem.org) has been used extensively for studies of global oxidant-aerosol chemistry. A recent description of the model radical chemistry is given in
Mao et al. (2010), and a recent evaluation of the global tropospheric ozone simulation with sonde and satellite observations is given in Zhang et al. (2010). We developed a tropospheric bromine simulation capability fully coupled to the standard oxidant-aerosol chemistry mechanism in version 8-02-02 of the model. The simulation includes ten bromine species transported in the model: Br$_2$, Br, BrO, HBr, HOBr, BrNO$_2$, BrNO$_3$, CHBr$_3$, CH$_2$Br$_2$, and CH$_3$Br. Here we describe the relevant emissions, chemistry, and deposition. All GEOS-Chem simulations presented here have horizontal resolution of 4° latitude x 5° longitude, 47 vertical layers extending from the surface to ~80 km in altitude, and an external chemical time step of 1 hour. Transport is driven by GEOS-5 assimilated meteorological fields for 2007 from the NASA Global Modeling and Assimilation Office (GMAO). The chemical mechanism is integrated with the SMVGear solver for all tropospheric gridboxes (Jacobson and Turco, 1994; Bey et al., 2001). Linear chemistry with climatological rates is used for the stratosphere (Bey et al., 2001), including improved treatment of ozone chemistry with the Linoz parameterization (McLinden et al., 2000). Stratospheric Br$_y$ concentrations are specified from a model climatology as described below.

2.1 Tropospheric sources of Br$_y$

Tropospheric Br$_y$ is produced in the model by debromination of sea salt aerosol (SSA), photolysis of CHBr$_3$, and oxidation of CHBr$_2$, CH$_2$Br$_2$, and CH$_3$Br by OH (Table 1). SSA observations indicate typically a 50% loss of bromide (Br$^-$) relative to seawater composition, implying release to the atmosphere as Br$_y$ (R. Sander et al., 2003). This release may take place by various reactions producing Br$_2$, BrCl, or HOBr (Vogt et al., 1996; R. Sander et al., 1999, 2003), all of which rapidly photolyze to release BrO$_x$ radicals. We treat SSA debromination following the Yang et al. (2005) observation-based parameterization of Br$^-$ depletion factors relative to seawater for particles in the 1-10 µm diameter range. These depletion factors are applied to the size-dependent SSA source function in GEOS-Chem (Alexander et al., 2005). The resulting Br$_y$ is released as Br$_2$ uniformly through the depth of the marine boundary layer (MBL) diagnosed from the GEOS-5 meteorological data. Uncertainty in this source will be discussed in Sect. 3. Though SSA debromination is the largest source of tropospheric Br$_y$ in GEOS-Chem, removal by deposition in the MBL is fast. We find that this source contributes 48% of Br$_y$ in the global free troposphere, the rest originating from bromocarbons.
CHBr$_3$ and CH$_2$Br$_2$ are emitted from oceanic macroalgae and phytoplankton (Quack and Wallace, 2003; Yokouchi et al., 2005; Butler et al., 2007), and are thought to be the dominant bromocarbon precursors for tropospheric Br$_x$ (Warwick et al., 2006; Law and Sturges, 2007). We use emission estimates from Liang et al. (2010) for different latitudinal bands and including enhancements in coastal regions (Carpenter et al., 1999), based on ship cruise data (Quack and Wallace, 2003; Warwick et al., 2006) and refined with airborne observations (Liang et al., 2010). The Liang et al. (2010) emission estimates are aseasonal, but we add seasonality to the CHBr$_3$ source in the northern extratropics (>30°N) as described below to better match observations. Both CHBr$_3$ and CH$_2$Br$_2$ in the model are removed by oxidation by OH, and CHBr$_3$ is in addition removed by photolysis (Table 2). We compute mean tropospheric lifetimes for CHBr$_3$ and CH$_2$Br$_2$ of 21 days and 91 days respectively (Table 1).

We evaluated our simulations of CHBr$_3$ and CH$_2$Br$_2$ with observations from NASA aircraft campaigns previously used by Liang et al. (2010) in the evaluation of their GEOS Climate Chemistry Model (GEOS CCM) simulation. We sampled GEOS-Chem results as averages for the coherent spatial domains of each campaign and for the appropriate months, following the standard methodology used for model evaluation of other species (Bey et al., 2001; Fischer et al., 2012). The observations are for years other than our 2007 simulation year but we regard interannual variability as only a small source of error.

Figure 1 shows composite vertical profiles of CHBr$_3$ and CH$_2$Br$_2$ concentrations for the tropics and northern extratropics in April-June. The shapes of the vertical profiles test the model vertical transport modulated by atmospheric lifetime, including in particular the delivery to the free troposphere where the lifetime of Br$_x$ against deposition is long. We see from Fig. 1 that observed vertical gradients are steeper for CHBr$_3$ than for CH$_2$Br$_2$, and steeper in the extratropics than in the tropics, reflecting the differences in lifetimes. The model reproduces well these observations.

Figure 2 compares seasonal tropospheric columns of CHBr$_3$ and CH$_2$Br$_2$ in the tropics and northern extratropics for the ensemble of NASA aircraft campaigns. This provides a test of emissions in the model. We find that the aseasonal emissions of CHBr$_3$ from Liang et al. (2010) overestimate CHBr$_3$ columns in the northern extratropics during winter and spring, and therefore we apply a seasonal correction factor to these emissions as shown in the figure.

No systematic bias is otherwise apparent for CHBr$_3$ in the tropics or for CH$_2$Br$_2$. Our global CHBr$_3$ source is 407 Gg Br a$^{-1}$ globally (compared to 425 Gg Br a$^{-1}$ in Liang et al. (2010)).
Pyle et al. (2011) recently estimated a global CHBr$_3$ source of 380 Gg Br a$^{-1}$ constrained with observations from the OP3 campaign over the maritime continent. Our global CH$_2$Br$_2$ source is 57 Gg Br a$^{-1}$, same as Liang et al. (2010).

CH$_3$Br has a sufficiently long lifetime to be well-mixed in the troposphere. Surface air observations from the NOAA/GMD global network show a near-uniform concentration of 6 – 9 ppt (Montzka et al., 2003) and we use these as lower boundary condition in the model: 6.7 ppt in the southern hemisphere and 8.5 ppt in the northern hemisphere. The implied tropospheric source of Br$_y$ to balance the computed CH$_3$Br sink in GEOS-Chem is 56 Gg Br a$^{-1}$, slightly lower than a previous estimate of 63 – 78 Gg Br a$^{-1}$ (Saltzman et al., 2004).

Halons and other bromocarbons photolyzed or oxidized in the stratosphere represent an additional source of Br$_y$ to the troposphere. This is treated here as an upper boundary condition above the local model tropopause using archived Br$_y$ concentrations from the Liang et al. (2010) stratospheric simulation with the GEOS-5 CCM. The mean stratospheric Br$_y$ concentration in that simulation is 22 ppt. We use monthly mean 3-D concentration data from Liang et al. (2010) for individual Br$_y$ species, separately for daytime and nighttime. The resulting cross-tropopause source of tropospheric Br$_y$ in GEOS-Chem is 36 Gg Br a$^{-1}$, as determined by difference with a sensitivity simulation using a zero-concentration upper boundary condition for all Br$_y$ species above the tropopause.

Other tropospheric Br$_y$ sources are neglected as unimportant on a global scale. Kerkweg et al. (2008) estimated that photo-oxidation of bromocarbons other than CHBr$_3$, CH$_2$Br$_2$, and CH$_3$Br accounts for 24 Gg Br a$^{-1}$ of tropospheric Br$_y$. Pyle and Mather (2009) estimated a global volcanic source of 5 – 15 Gg Br a$^{-1}$. Photochemical bromine release from sea ice and salt beds can lead to high local concentrations of BrO in surface air (Stutz et al., 2002; Simpson et al., 2007) but the volumes affected are negligible on a global scale.

2.2 Chemical cycling of Br$_y$

Table 2 lists the chemical mechanism for tropospheric bromine in GEOS-Chem. Rate constants, heterogeneous reaction coefficients, and photolysis cross-sections are taken from S. Sander et al. (2010) unless otherwise specified. Photolysis rates are calculated online with the Fast-J radiative transfer model (Wild et al., 2000). Heterogeneous bromine chemistry in aerosols includes hydrolysis of BrNO$_3$ (R29) and reaction between HOBr and HBr (R30).
Both are treated with a standard reactive uptake probability (γ) formulation, resulting in an effective gas-phase loss rate constant to a monodisperse aerosol (radius a) given by

$$k = \left(\frac{a}{D} + \frac{4}{\nu \gamma} \right)^{-1} A \quad (1)$$

Here D is the molecular diffusion coefficient in air, ν is the mean molecular speed of the gas, and A is the aerosol surface area concentration per unit volume of air (cm2/cm3) (Schwartz, 1986; Jacob, 2000). GEOS-Chem simulates explicitly the mass concentrations of different aerosol types, and we integrate k over the prescribed relative humidity-dependent size distributions as described by Martin et al. (2002). For BrNO$_3$ hydrolysis (R29) on liquid cloud droplets, the cloud surface area concentration A is calculated from GEOS-5 liquid water content data, assuming effective droplet radii of 10 μm and 6 μm for marine and continental clouds respectively (Park et al., 2004; Fu et al., 2008). For HBr+HOBr (R30) on ice cloud surfaces, we use $A = 2 \times 10^{-4} I^{0.9}$ cm2/cm3 (Lawrence and Crutzen, 1998) applied to the local ice water content I (cm3/cm3) from the GEOS-5 data.

(R30) is an important pathway for recycling bromine radicals in the troposphere (von Glasow et al., 2004; Yang et al., 2010). Although the kinetics are uncertain, there is substantial evidence for this reaction. Abbatt (1995) measured $\gamma > 0.25$ for HBr+HOBr in sulfuric acid solution (69 wt.%) with HBr present in excess. Laboratory measurements show that HOBr reactive uptake on deliquescent NaBr and NaCl aerosol has $\gamma > 0.2$ for pH < 7 (Abbatt and Waschewsky, 1998; Fickert et al., 1999; Wachsmuth et al., 2002). Fickert et al. (1999) determined the relative production of Br$_2$ vs. BrCl for HOBr reacting with aqueous salt solutions containing both Br$^-$ and Cl$^-$, and found $\geq 90\%$ Br$_2(g)$ production for [Br$^-$]/[Cl$^-$] ratios typical of seawater. Mochida et al. (1998) measured $\gamma = 0.18 \pm 0.02$ for HOBr reactive uptake on solid KBr. On ice surfaces with excess HBr, Abbatt (1994) measured $\gamma = 0.12 \pm 0.03$ for HOBr+HBr at 228 K, and Chaix et al. (2000) measured $\gamma = 0.15 \pm 0.03$ at 205 K. Based on this ensemble of evidence and the recommendation of S. Sander et al. (2010), we assume that (R30) proceeds with $\gamma = 0.2$ for sulfate and sea salt aerosol (presumed aqueous) and $\gamma = 0.1$ for ice surfaces, where γ is applied to the locally limiting reactant.
2.3 Sinks of Br$_y$

Individual Br$_y$ species are removed by wet and dry deposition. Wet deposition in GEOS-Chem takes place by scavenging in convective updrafts and by in- and below-cloud scavenging from large-scale and convective precipitation (Liu et al., 2001). A standard test for wet deposition in global CTMs is simulation of 210Pb aerosol, for which the source and atmospheric concentrations are relatively well constrained (Balkanski et al., 1993). Our version of GEOS-Chem yields a tropospheric lifetime of 210Pb against deposition of 9.5 days (L.T. Murray, pers. comm.), consistent with a best observational estimate of 9 days (Liu et al., 2001).

Different gas scavenging efficiencies are used in GEOS-Chem for warm liquid clouds ($T > 268$ K), mixed clouds ($248 < T < 268$ K), and cold ice clouds ($T < 248$ K). For warm clouds, partitioning into the aqueous phase is determined by the Henry’s law constant (Table 2e) and the liquid volume fraction of the precipitating water. Precipitation in mixed clouds is assumed to take place by riming, and the scavenging efficiency depends on the retention efficiency when the cloud droplets freeze (Stuart and Jacobson, 2003). For HBr we assume a 100% riming retention efficiency, following recommendations from Stuart and Jacobson (2003) for gases with large effective Henry’s Law constants. For other Br$_y$ species we assume no retention during riming. We find little sensitivity to the assumed retention efficiency, consistent with previous GEOS-Chem studies for scavenging of ammonia (J. Wang et al., 2008; Fisher et al., 2010). We assume no scavenging from cold clouds. HBr and HOBr undergo heterogeneous chemistry at the surface of ice particles as discussed in Sect. 2.2.

Dry deposition velocities are calculated locally in GEOS-Chem following a standard resistance-in-series model with surface resistance determined by the Henry’s law constant, surface type, and meteorological conditions (Wesely, 1989; Y. Wang et al., 1998). The resulting global annual mean deposition velocities are 0.94 cm s$^{-1}$ for BrNO$_3$, 0.93 cm s$^{-1}$ for HBr, and 0.40 cm s$^{-1}$ for HOBr.

3 Global budget of tropospheric Br$_y$

Figure 3 shows the global annual mean budget and cycling of tropospheric Br$_y$ in our simulation. The BrO concentration is 0.32 ppt, which implies a daytime mean of 0.64 ppt since nighttime concentrations are near zero. This is at the low end of the oft-cited (but poorly constrained) 0.5 – 2 ppt range in the observations; more detailed comparison with satellite observations will be presented in Sect. 4. The global mean Br$_y$ concentration is 3.2
ppt, with HBr and HOBr as the principal reservoirs accounting respectively for 34% and 28% of total Br\(_y\). Br\(_y\) has a lifetime of 7 days against deposition, with HBr accounting for 55% of that sink and HOBr for 40%. Chemical lifetimes are short relative to deposition; that of HBr (the longest-lived reservoir) is only 6 hours. Thus the BrO\(_x\) radical concentrations are effectively maintained by chemical recycling from non-radical reservoirs.

We see from Fig. 3 that the HBr+HOBr heterogeneous reaction (R30) plays an important role in the recycling of BrO\(_x\) from HBr. A sensitivity simulation without this reaction indicates a factor of 2 decrease in the BrO concentration to 0.15 ppt, with HBr accounting for 70% of Br\(_y\); the lifetime of Br\(_y\) is shorter in that simulation (5 days) because of the high water solubility of HBr (Table 2e). The importance of (R30) reflects the comparable concentrations of HBr and HOBr (Fig. 3), as rapid HOBr production by the BrO+HO\(_2\) reaction (R18) compensates for the much longer lifetime of HBr (6 hours) than HOBr (20 minutes).

Figure 4 shows the zonal annual mean BrO, Br, and Br\(_y\) concentrations in the model. The highest concentrations of Br\(_y\) and BrO are in the marine boundary layer at southern mid-latitudes due to the large source from sea-salt aerosol debromination. In the rest of the troposphere Br\(_y\) is relatively uniform (2-4 ppt), with a minimum in the tropical upper troposphere due to scavenging in convective updrafts. Concentrations increase with altitude in the stratosphere where the boundary conditions from Liang et al. (2010) are applied. BrO and Br concentrations in Fig. 4 show a general increase with altitude, and BrO shows in addition an increase with latitude. The budget of BrO is largely that of BrO\(_x\) since [BrO] >> [Br]. From Fig. 3 we see that the dominant sink of BrO\(_x\) is the BrO+HO\(_2\) reaction (R18), which is fastest in the tropical lower troposphere where HO\(_2\) concentrations are highest. The dominant source of Br is photolysis of BrO (Fig. 3), which cancels the latitudinal dependence of BrO concentrations and drives the strong increase of Br concentrations with altitude.

4 Comparison to satellite observations of tropospheric BrO

Figure 5 compares simulated BrO tropospheric columns to a GOME-2 satellite data set retrieved by Theys et al. (2011) with monthly resolution for 2007 and for six latitudinal bands. Theys et al. (2011) fitted total slant columns of BrO to the solar backscattered radiation spectra. They then removed the stratospheric contribution by using correlations of stratospheric BrO with ozone and NO\(_2\) from the BASCOE 3D-CTM (Theys et al., 2009) and
applying these correlations to the local GOME-2 observations of ozone and stratospheric NO₂ columns. They converted the tropospheric slant columns to vertical columns with an air mass factor assuming a Gaussian-shaped vertical distribution of BrO peaking at 6 km altitude. The grey shading in Fig. 5 indicates the total observational error estimated by Theys et al. (2011), including contributions from the air mass factor, surface albedo, cloud fractions, stratospheric BrO column removal, and cloud top heights.

The GOME-2 data are for ~0930 local time (LT) and we sample GEOS-Chem at 9-11 LT for comparison. GEOS-Chem data in Fig. 5 include both the actual tropospheric vertical columns (red) and the columns corrected for the Theys et al. (2011) air mass factors using their tabulated scattering weights including for partly cloudy scenes. The correction is uncertain because the tabulation of scattering weights is sparse, but the effect is relatively small except at southern mid-latitudes where the model BrO has a large contribution from the boundary layer. Also shown in Fig. 5 are actual tropospheric vertical columns sampled at 9-11 LT from the p-TOMCAT CTM bromine simulation of Yang et al. (2010), (blue) and from GEOS-Chem without the HBr+HOBr reaction (R30) (dashed). p-TOMCAT and GEOS-Chem have completely different heritages. Specific differences in the p-TOMCAT simulation of bromine include the use of a smaller rate constant for HBr+HOBr (γ = 0.02 instead of 0.2, and no reaction on cloud ice particles), and consideration of a blowing snow source in polar regions during spring.

The standard GEOS-Chem simulation underestimates the GOME-2 observations by 30% on a global mean basis, excluding the poles (40% including the air mass factor correction), but this is marginally significant considering the observation error. The observations show a positive BrO gradient with increasing latitude that is well reproduced in GEOS-Chem contingent on the (R30) HBr+HOBr reaction. Although (R30) is a photochemical pathway inasmuch as HOBr and HBr are mainly produced photochemically, it is most effective when radiation is weak since aerosol uptake of HOBr competes with HOBr photolysis. Thus the effect of (R30) for BrOx recycling is relatively small in the tropics but very large in the extratropics. It has a strong effect on seasonality in the extratropics, enabling GEOS-Chem to reproduce the observed winter maximum at northern mid-latitudes, in contrast to p-TOMCAT where (R30) is less important due to a seasonally constant non-sea salt aerosol loading and lower γ.

A major feature in the BrO observations of (Theys et al., 2011) is the strong Arctic spring maximum. This is reproduced by both GEOS-Chem and p-TOMCAT but for different
reasons. In GEOS-Chem it is due mainly to (R30), with the spring shift (relative to the winter maximum at northern mid-latitudes) due to the need for some insolation to drive HOBr production. In p-TOMCAT it is due to the blowing-snow source (Yang et al., 2008, 2010). The Arctic column amounts in GEOS-Chem are dominated by the free troposphere, while those in p-TOMCAT have a large boundary layer contribution. In-situ observations of BrO during the ARCTAS aircraft campaign over Alaska in April 2008 found significant mixing ratios in the free troposphere, with a mean of ~2 ppt (Salawitch et al., 2010). In comparison, GEOS-Chem simulates a 9-17 LT mean of 1.3 ppt BrO for the Arctic free troposphere in April.

Figure 5 shows little seasonal variation of BrO column in the tropics, either in the observations or the models. The models are too low. Observations at southern mid-latitudes show concentrations comparable to northern mid-latitudes (confirming the dominant natural origin of Br\textsubscript{y}) but weaker seasonal dependence as might be expected from lower aerosol concentrations to drive (R30). We conducted several additional sensitivity simulations to examine if uncertainties in gas-phase bromine kinetics as estimated by S. Sander et al. (2010) could account for the 30% global model underestimate of BrO relative to the Theys et al. (2011) data. We found the effects to be relatively small. The largest response was from the Br+CH\textsubscript{2}O reaction (R5). Decreasing the pre-exponential factor for that reaction by 30% and increasing the activation energy by 30% (error standard deviations from S. Sander et al. (2010)) resulted in a 19% global increase in simulated BrO.

5 Impact on tropospheric ozone and OH

Tropospheric bromine chemistry drives several catalytic cycles for ozone loss in the troposphere. The three most important are:

Mechanism 1: BrO + HO\textsubscript{2}

\[
Br + O_3 \longrightarrow BrO + O_2 \quad \text{(R5)}
\]

\[
BrO + HO_2 \longrightarrow HOBr + O_2 \quad \text{(R14)}
\]

\[
HOBr + h\nu \longrightarrow Br + OH \quad \text{(R25)}
\]

\[
\text{net}: O_3 + HO_2 \longrightarrow OH + 2O_2
\]
with closure for the hydrogen oxide radicals \((\text{HO}_x \equiv \text{OH} + \text{H} + \text{HO}_2 + \text{organic peroxy and oxy radicals})\) provided for example by oxidation of CO,

\[
\text{CO} + \text{OH} \xrightarrow{O_1} \text{CO}_2 + \text{HO}_2.
\]

Mechanism 2: \(\text{BrNO}_3 + \text{H}_2\text{O}\)

\[
\begin{align*}
5 & \quad \text{Br} + \text{O}_3 \longrightarrow \text{BrO} + \text{O}_2 \\
6 & \quad \text{BrO} + \text{NO}_2 + \text{M} \longrightarrow \text{BrNO}_3 + \text{M} \\
7 & \quad \text{BrNO}_3 \xrightarrow{\text{H}_2\text{O}, \text{aerosol}} \text{HOBr} + \text{HNO}_3 \\
8 & \quad \text{HOBr} + \text{hv} \longrightarrow \text{Br} + \text{OH} \\
9 & \quad \text{net}: \text{O}_3 + \text{NO}_2 + \text{H}_2\text{O}_{(aq)} \longrightarrow \text{O}_2 + \text{HNO}_3 + \text{OH}.
\end{align*}
\]

Mechanism 3: \(\text{HOBr} + \text{HBr}\)

\[
\begin{align*}
10 & \quad \text{Br} + \text{O}_3 \longrightarrow \text{BrO} + \text{O}_2 \\
11 & \quad \text{BrO} + \text{HO}_2 \longrightarrow \text{HOBr} + \text{O}_2 \\
12 & \quad \text{Br} + \text{RH} \xrightarrow{O_1} \text{HBr} + \text{RO}_2 \\
13 & \quad \text{HOBr} + \text{HBr} \xrightarrow{\text{aerosol or ice}} \text{Br}_2 + \text{H}_2\text{O} \\
14 & \quad \text{Br}_2 + \text{hv} \longrightarrow 2\text{Br} \\
15 & \quad \text{net}: \text{O}_3 + \text{HO}_2 + \text{RH} \longrightarrow \text{O}_2 + \text{H}_2\text{O} + \text{RO}_2.
\end{align*}
\]

A common step in all three mechanisms is the formation of HOBr, and we can see from Fig. 3 that both sinks of HOBr (photolysis and reaction with HBr) drive ozone loss. Thus Br-catalyzed ozone loss is limited by the rate of HOBr production. The BrO+HO_2 reaction (R14) accounts for 95% of global tropospheric HOBr production, while BrNO_3 hydrolysis accounts for the rest. Since 92% of HOBr is photolyzed, Mechanism 1 is responsible for about 90% of Br-catalyzed ozone loss. However, Mechanism 2 has the important secondary effect of providing a sink for NO_x and thus slowing down ozone production.

Table 3 shows the global impact of bromine chemistry on the tropospheric ozone budget. The budget is calculated following standard procedure as that of the odd oxygen family \(\text{O}_x \equiv \text{O}_3 + \text{NO}_2 + 2\text{NO}_3 + \text{peroxyacylnitrates} + \text{HNO}_4 + 3\text{N}_2\text{O}_5 + \text{HNO}_3 + \text{BrO} + \text{BrNO}_2 + 2\text{BrNO}_3\) (Crutzen and Schmalzl, 1983; Wu et al., 2007) to account for fast cycling of minor species.
with ozone. The tropospheric production rate of ozone in GEOS-Chem decreases by 4.1% when bromine chemistry is included, and the ozone lifetime decreases by 2.9%. We find a 6.5% decrease in the global tropospheric ozone burden. A previous model study by von Glasow et al. (2004) found a larger (10-15%) effect of bromine chemistry on the tropospheric ozone budget because they imposed higher bromine concentrations. Yang et al. (2010) found bromine to decrease the ozone burden by 25.5 Tg (8.6%), close to our result of 24 Tg (6.5%).

We see from Table 3 that bromine chemistry also causes a 4% decrease in the global concentration of OH, the main tropospheric oxidant. This appears to mainly reflect the decreases in ozone and NOx, and is partly compensated by the source of OH from Mechanism 2. Applying our global mean fields of OH and temperature with kinetics from S. Sander et al. (2010), we calculate a methylchloroform tropospheric lifetime against oxidation by OH in GEOS-Chem of 4.79 years with bromine and 4.65 years without. Though both are shorter than estimates from observations, 5.5 to 6 years (Spivakovsky et al., 2000; Prinn et al., 2005), bromine decreases the model bias. Fast conversion of HO2 to H2O in aerosols, not included in our GEOS-Chem version, could fully correct the bias (Mao et al., 2010, 2012).

Figure 6 shows the seasonal zonal mean decreases in tropospheric ozone concentrations due to bromine chemistry. Concentrations decrease by <1-8 ppb depending on region and season. The impact is largest in the northern extratropics in spring, reflecting a combination of elevated BrO (Fig. 5) and ozone. The general increase with latitude in the effect of bromine on ozone is consistent with the previous model studies of von Glasow et al. (2004) and Yang et al. (2010). We find little zonal variability in the effect.

A number of studies have previously evaluated the global ozone simulation in GEOS-Chem with observations from surface sites, sondes, and satellites (Sauvage et al., 2007; Nassar et al., 2009; Zhang et al., 2010). These have shown patterns of over- and underestimates that can vary significantly in successive model versions due to changes in model emissions, chemistry, and transport (Wu et al., 2007). Zhang et al. (2010) presented an extensive global comparison to ozonesonde and satellite measurements using a version of GEOS-Chem similar to ours (v8-02-03). They found that the model was too high in southern mid-latitudes and the northern subtropics but too low in the tropics, with negligible bias in the northern extratropics. Adding bromine chemistry in that simulation would produce mixed results in comparisons to observations. However, the latest version of GEOS-Chem (v9; www.geos-chem.org) includes improved isoprene chemistry that corrects the ozone bias in the tropics but drives a systematic
model overestimate of 5-10 ppb in the northern extratropics (Paulot et al., 2009a, 2009b).
Including bromine chemistry in that latest version could largely correct the discrepancy in the
extratropics and this will need to be investigated in future work.

6 Impact on pre-industrial ozone and radiative forcing

A long-standing problem in global modeling of tropospheric ozone has been the inability of
models to reproduce the very low ozone concentrations measured in surface air worldwide at
the turn of the 20th century (Y. Wang and Jacob, 1998; Mickley et al., 2001; Shindell et al.,
2003; Lamarque et al., 2005; Horowitz, 2006). Calibration of these older measurements is
controversial (Marenco et al., 1994) but the Montsouris (Paris) measurements are considered
reliable (Volz and Kley, 1988). To examine the potential for bromine chemistry to address
this discrepancy we conducted a GEOS-Chem sensitivity simulation for the pre-industrial
atmosphere removing all anthropogenic sources (including NOx from fertilizer use), and
reducing methane from 1700 ppb to 700 ppb. We decreased biomass burning to 10% of its
present value (Y. Wang and Jacob, 1998), though this has little impact on our results.

Bromine sources were held to present-day estimates, except for CH3Br and the stratospheric
boundary condition. We used 5 ppt CHBr3 in surface air worldwide based on ice core records
(Saltzman et al., 2004). Concentrations of stratospheric Bry species were scaled from a total of
22 ppt to 12 ppt Bry (Liang et al., 2010; Montzka et al., 2011).

Figure 7 compares the 1876-1886 Montsouris observations to simulated pre-industrial ozone
from GEOS-Chem and p-TOMCAT (Yang et al., 2010), with and without bromine chemistry.
p-TOMCAT applies similar conditions to GEOS-Chem for simulating the pre-industrial
atmosphere. The simulations without bromine chemistry overestimate the mean observed
ozone by 6.2 and 3.1 ppb in GEOS-Chem and p-TOMCAT respectively. Both simulations
show a seasonal maximum in late winter and early spring, which is a standard extratropical
feature in models of natural ozone (Y. Wang and Jacob, 1998; Monks, 2000; Mickley et al.,
2001) but is not seen in the Montsouris observations. Including bromine chemistry decreases
annual mean ozone at Montsouris by 2.6 and 1.9 ppb in GEOS-Chem and p-TOMCAT,
respectively, effectively correcting the overestimate in p-TOMCAT and reducing it
substantially in GEOS-Chem. The decrease is least in summer (0.9 – 1.4 ppb) and greatest in
winter-spring (2.3 – 5.1 ppb), which suppresses the winter-spring maximum in both models.
Although there are significant differences in simulated ozone between GEOS-Chem and p-TOMCAT, the impact of bromine chemistry on both models is consistent.

Saiz-Lopez et al. (2011) recently suggested that halogen chemistry could reduce the radiative forcing from anthropogenic tropospheric ozone since pre-industrial times by -0.1 W m^{-2} or about 30%. However, they only considered the impact of this chemistry on the present-day atmosphere. Considering that tropospheric halogens are mainly natural, they would also decrease ozone in the pre-industrial atmosphere. We find in GEOS-Chem that although the sources of bromine are similar in the present and pre-industrial atmospheres, the chemistry differs in two principal ways. First, lower methane in the pre-industrial atmosphere leads to lower CH$_2$O and hence suppressed production of HBr by (R5). Second, lower aerosol loadings suppress the HBr + HOBr heterogeneous reaction (R30). These two effects have competing influences on tropospheric BrO and we find in GEOS-Chem that they largely cancel. Thus the effects of bromine chemistry on ozone are similar in the present-day and pre-industrial atmospheres. We find that the increases in the total tropospheric ozone burden from pre-industrial to present are 119 and 113 Tg in the simulations without and with bromine chemistry, respectively. Considering that the radiative forcing from tropospheric ozone depends roughly linearly on the change in burden (Mickley et al., 1999), we conclude that bromine chemistry decreases ozone radiative forcing by about 5%.

The impact of bromine chemistry on pre-industrial U.S. surface ozone is of interest because this natural background represents a policy reference point for assessing the risk associated with anthropogenic emissions (US Environmental Protection Agency, 2006). Zhang et al. (2011) recently reported a mean natural ozone background in U.S. surface air of 18±6 ppb using a high-resolution version of GEOS-Chem. We find in our simulation that bromine chemistry decreases natural surface ozone over the U.S. from 16 ppb to 13 ppb on an annual mean basis, i.e., an effect of 3 ppb.

7 Implications for the atmospheric lifetime of mercury

Mercury in the atmosphere is mostly emitted as gaseous Hg(0), and is removed by oxidation followed by rapid deposition of the water-soluble Hg(II) compounds (Lindberg et al., 2007). The observed atmospheric variability of Hg(0) implies a lifetime against deposition of 0.5-1 years, with a possibly shorter lifetime against oxidation depending on whether atmospheric Hg(II) can be reduced back to Hg(0) (Slemr et al., 1981, 1985; Bergan et al., 1999; Holmes et
Most models of atmospheric mercury have assumed that oxidation of Hg(0) is driven by OH and ozone, but these reactions are now thought to be too slow to be of atmospheric relevance (Calvert and Lindberg, 2005; Hynes et al., 2009). Goodsite et al. (2004) showed that rapid oxidation of Hg(0) to Hg(II) by Br atoms could take place by

$$\begin{align*}
Hg + Br + M & \rightarrow HgBr + M \\
(HgBr) & \rightarrow Hg + Br \\
HgBr + X & \rightarrow HgBrX,
\end{align*}$$

where X is a radical, such as OH or Br, that converts unstable Hg(I) to stable Hg(II) in a 3-body reaction. Under tropospheric conditions, (R31) operates in the low-pressure limit whereas (R33) operates in the high-pressure limit (Goodsite et al., 2004; Donohoue et al., 2006). Using the kinetic data from Goodsite et al. (2004) and Donohue et al. (2006), together with Br concentration fields from the p-TOMCAT model (Yang et al., 2005) and OH fields from GEOS-Chem, Holmes et al. (2006, 2010) showed that oxidation by Br atoms could represent the dominant global atmospheric sink for Hg(0). Here we revisit this calculation using our computed Br concentrations and draw implications for possible changes in the Hg(0) atmospheric lifetime between pre-industrial and present conditions.

The lifetime τ of Hg(0) against oxidation to Hg(II) by (R31)-(R33) is given by

$$\tau = \frac{k_{32} + k_{33,Br} [Br] + k_{33,OH} [OH]}{k_{31} [Br] [M] (k_{33,Br} [Br] + k_{33,OH} [OH])},$$

where we have assumed that X in (R33) can be either Br or OH, following Holmes et al. (2006, 2010). Using the kinetic data of Holmes et al. (2010) and assuming a uniform tropospheric Hg(0) concentration, we derive from our GEOS-Chem model fields a global tropospheric Hg(0) lifetime of 0.33 years against oxidation. In comparison, Holmes et al. (2010) calculated a lifetime of 0.5 years in a GEOS-Chem Hg(0) simulation using the Yang et al. (2005) Br concentrations in the free troposphere and assuming 1 ppt BrO in the marine boundary layer. We repeated our calculation using their archived Br and OH fields and obtain a lifetime of 0.41 years, which can be viewed as consistent in view of the uncertainty involved with assuming a uniform Hg(0) concentration. Our 20% shorter lifetime (0.33 vs. 0.41 years) reflects a 13% greater mean tropospheric Br concentration in our GEOS-Chem simulation. The response of the lifetime to change in Br concentration is more than linear because thermal decomposition of HgBr (R32) competes with (R33). We see from Eq. (2) that the response
would be quadratic ($\tau \sim 1/[\text{Br}]^2$) in the limit where (R32) dominates over (R33) ($k_{32} >> k_{33}[X]$) and (R33) mainly involves reaction with Br ($k_{33,\text{Br}}[\text{Br}] >> k_{33,\text{OH}}[\text{OH}]$).

The mean tropospheric Br atom concentration in our pre-industrial simulation is 38% greater than present-day due to lower ozone suppressing the Br+O$_3$ reaction (R4). This increase in Br causes the Hg(0) lifetime against oxidation to decrease to 0.19 years, 42% lower than present-day. Our work thus suggests that the increase in ozone since pre-industrial times may have increased the atmospheric residence time of Hg(0) by 70%. With an atmospheric lifetime of only two months, mercury in pre-industrial times would be much less of a global pollutant than today; mercury emitted at northern mid-latitudes would mostly be deposited there. Most of the observed increase in ozone has taken place since 1950 (Marenco et al., 1994), by which time there had already been large anthropogenic mercury emissions at northern mid-latitudes from mining, industry and combustion (Streets et al., 2011).

Slemr et al. (2011) recently reported a 20-38% worldwide decrease in mercury in surface air over the 1996-2010 period. This cannot be explained by global tropospheric ozone trends, which are inconsistent and weak over that period (Oltmans et al., 2006; Chipperfield et al., 2007; Logan et al., 2012). However, Soerensen et al. (in preparation) argue that the mercury trend is robust only for the North Atlantic and adjacent land areas. The surface ozone background over the North Atlantic has steadily increased over the past decades (Lelieveld et al., 2004; Oltmans et al., 2006; Derwent et al., 2007; Parrish et al., 2009; Dentener et al., 2010), which would imply a corresponding decrease of Br in the MBL and hence of mercury deposition to the ocean. Most of the mercury deposition to the ocean originates from oxidation in the MBL (Selin et al., 2008; Holmes et al., 2009). The decrease in deposition would then affect the re-emission from the ocean as elemental mercury (Soerensen et al., 2010) and could in this manner contribute to the observed atmospheric decrease and to the observed mercury enrichment in North Atlantic subsurface waters relative to the surface.

8 Conclusions

We have developed a simulation of tropospheric bromine coupled to oxidant-aerosol chemistry in the GEOS-Chem global chemical transport model (CTM). Our goal was to better understand the effect of bromine chemistry on tropospheric ozone and mercury, for both the present and pre-industrial atmospheres.
We found that standard gas-phase mechanisms for bromine chemistry are unable to reproduce observed levels of tropospheric BrO, including the latitudinal and seasonal variations reported in the new GOME-2 satellite product of Theys et al. (2011). Considerable improvement is achieved by including in GEOS-Chem the HOBr+HBr reaction in aerosols. This brings model BrO into the observed range and reproduces major features of the satellite observations including the increase with latitude and the seasonal maxima in northern mid-latitudes in winter and in the Arctic in spring. Laboratory studies provide ample evidence for the HOBr+HBr reaction but offer limited quantitative information to constrain models. The reactive uptake probability approach used here (\(\gamma=0.2\) for sulfate and sea-salt aerosols, \(\gamma=0.1\) for ice crystals) is probably too simplistic. There is a need to better characterize this reaction over a range of aerosol types and temperatures relevant to the troposphere.

Tropospheric bromine chemistry in GEOS-Chem decreases the present-day global burden of tropospheric ozone by 6.5%. This is due in part to loss of NO\(_x\) by BrNO\(_3\) formation and hydrolysis, and in part to catalytic loss of ozone by HOBr formation and photolysis. Ozone mixing ratios decrease by <1-8 ppb depending on region and season, with the largest effects in the extratropical northern hemisphere in spring. The global mean OH concentration decreases by 4%. These changes in ozone and OH appear to ameliorate previous GEOS-Chem biases in comparisons to observations, although more work is needed to evaluate the simulation of ozone.

We find that bromine chemistry significantly improves the ability of global models to reproduce surface ozone observations from the turn of the 20\(^{th}\) century. BrO concentrations in GEOS-Chem are comparable in the present-day and pre-industrial atmospheres, as the effect of decreased methane (suppressing the BrO\(_x\) sink from the CH\(_2\)O+Br reaction) is compensated by the effect of decreased aerosol (suppressing the BrO\(_x\) source from the HBr+HOBr reaction). Comparison of pre-industrial simulations with the GEOS-Chem and p-TOMCAT CTMs to 1876-1886 observations at Montsouris (France) show mean overestimates of 6 ppb in GEOS-Chem and 3 ppb in p-TOMCAT without bromine chemistry. Including bromine chemistry has similar effects in both models, fully correcting the bias relative to observations in p-TOMCAT and reducing it by half in GEOS-Chem. It suppresses the winter-spring model maximum, better representing the aseasonal behavior of the observations. Bromine chemistry in GEOS-Chem decreases the natural surface ozone background over the U.S. by 3 ppb on an annual mean basis, a significant increment when assessing the effect of anthropogenic
emissions on ozone exposure. Because the effect of bromine chemistry on ozone is similar in
the present-day and pre-industrial atmospheres, the global radiative forcing from
anthropogenic tropospheric ozone is negligibly affected.

In contrast to the similarity between BrO concentrations in the pre-industrial troposphere and
present-day, we find that Br atom concentrations are 40% higher (global mean) in the pre-
industrial troposphere because of lower ozone. It has been hypothesized that Br could provide
the main atmospheric oxidant for conversion of elemental mercury Hg(0) to Hg(II), with a
linear-to-quadratic dependence on Br concentrations (Holmes et al., 2006, 2010). If so,
anthropogenic ozone would have an important impact on the atmospheric lifetime of mercury.

Based on best estimates for Hg-Br kinetics, we find in GEOS-Chem that the lifetime of Hg(0)
against oxidation to Hg(II) by Br atoms was 2 months in the pre-industrial atmosphere as
compared to 4 months at present. Most of the anthropogenic increase in tropospheric ozone
has taken place since 1950, and background surface ozone concentrations at northern mid-
latitudes have continued to increase in recent decades. Thus historical mercury emissions
from human activity (mining, industry, combustion) may not have dispersed globally to the
extent previously thought, but instead deposited mostly to the northern mid-latitudes. This
could possibly explain observations of elevated mercury in North Atlantic subsurface waters
(Soerensen et al., 2010) and the recent trend of decreasing atmospheric concentrations over
the North Atlantic. It should be emphasized, however, that the role of Br as a global mercury
oxidant remains hypothetical. Our results stress the need for further research to better
establish this role.

Acknowledgements
This work was funded by the NASA Atmospheric Composition Modeling and Analysis
Program and by the Atmospheric Chemistry Program of the National Science Foundation.
J.A.P. and X.Y. thank NERC and NCAS for funding.
References

1 Le Sager, P., and Carouge, C.: Chemistry of hydrogen oxide radicals (HO\textsubscript{x}) in the Arctic
troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, 10.5194/acp-10-5823-2010, 2010.
2 Mao, J., Fan, S.-M., and Jacob, D. J.: Radical loss in the atmosphere from Cu-Fe redox
increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative
4 Martin, R. V., Jacob, D. J., Logan, J. A., Bey, I., Yantosca, R. M., Staudt, A. C., Li, Q., Fiore,
observations of tropical tropospheric ozone with a global model and in situ observations, J.
5 McGrath, M. P., and Rowland, F. S.: Ideal Gas Thermodynamic Properties of HOBr, The
Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux, J.
forcing from tropospheric ozone calculated with a unified chemistry-climate model, J.
8 Mickley, L. J., Jacob, D. J., and Rind, D.: Uncertainty in preindustrial abundance of
tropospheric ozone: Implications for radiative forcing calculations, J. Geophys. Res., 106,
9 Mochida, M., Akimoto, H., van den Bergh, H., and Rossi, M. J.: Heterogeneous Kinetics of
the Uptake of HOBr on Solid Alkali Metal Halides at Ambient Temperature, The Journal of
Physical Chemistry A, 102, 4819-4828, 10.1021/jp980849q, 1998.
10 Monks, P. S.: A review of the observations and origins of the spring ozone maximum,
11 Montzka, S. A., Butler, J. H., Hall, B. D., Mondeel, D. J., and Elkins, J. W.: A decline in

29

Van Roozendael, M., Wagner, T., Richter, A., Pundt, I., Arlander, D. W., Burrows, J. P., Chipperfield, M., Fayt, C., Johnston, P. V., Lambard, J. C., Kreher, K., Pfeilsticker, K., Platt,

Table 1. Global sources of tropospheric bromine in GEOS-Chem.

<table>
<thead>
<tr>
<th>Source</th>
<th>Emission, Gg Br a(^{-1})</th>
<th>Lifetime, d(^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea salt debromination</td>
<td>1420</td>
<td>~0</td>
</tr>
<tr>
<td>CHBr(_3)</td>
<td>407</td>
<td>21</td>
</tr>
<tr>
<td>CH(_2)Br(_2)</td>
<td>57</td>
<td>91</td>
</tr>
<tr>
<td>CH(_3)Br</td>
<td>56</td>
<td>402</td>
</tr>
<tr>
<td>Transport from stratosphere</td>
<td>36</td>
<td>~0</td>
</tr>
</tbody>
</table>

\(^{a}\) Global mean tropospheric lifetimes of bromocarbons determining the release of Br\(_y\). Values of ~0 are entered for the sea salt debromination and stratospheric sources because these sources are as Br\(_y\).
<table>
<thead>
<tr>
<th>Reaction number</th>
<th>Reaction</th>
<th>A, cm3 molecule$^{-1}$s$^{-1}$</th>
<th>$-E_a/R$, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>CHBr$_3$ + OH \rightarrow 3Br + products</td>
<td>1.35×10^{-12}</td>
<td>− 600</td>
</tr>
<tr>
<td>R2</td>
<td>CH$_2$Br$_2$ + OH \rightarrow 2Br + products</td>
<td>2.00×10^{-12}</td>
<td>− 840</td>
</tr>
<tr>
<td>R3</td>
<td>CH$_3$Br + OH \rightarrow Br + products</td>
<td>2.35×10^{-12}</td>
<td>− 1300</td>
</tr>
<tr>
<td>R4</td>
<td>Br + O$_3$ \rightarrow BrO + O$_2$</td>
<td>1.60×10^{-11}</td>
<td>− 780</td>
</tr>
<tr>
<td>R5</td>
<td>Br + CH$_2$O \rightarrow HBr + HO$_2$ + CO</td>
<td>1.70×10^{-11}</td>
<td>− 800</td>
</tr>
<tr>
<td>R6</td>
<td>Br + HO$_2$ \rightarrow HBr + O$_2$</td>
<td>4.80×10^{-12}</td>
<td>− 310</td>
</tr>
<tr>
<td>R7</td>
<td>Br + CH$_3$CHO \rightarrow HBr + CH$_3$CO$_3$</td>
<td>1.30×10^{-11}</td>
<td>− 360</td>
</tr>
<tr>
<td>R8</td>
<td>Br + (CH$_3$)$_2$CO \rightarrow HBr + CH$_3$C(O)CH$_2$OO</td>
<td>1.66×10^{-10}</td>
<td>− 7000</td>
</tr>
<tr>
<td>R9</td>
<td>Br + C$_2$H$_5$ \rightarrow HBr + C$_2$H$_5$OO</td>
<td>2.36×10^{-10}</td>
<td>− 6411</td>
</tr>
<tr>
<td>R10</td>
<td>Br + C$_3$H$_8$ \rightarrow HBr + C$_3$H$_7$OO</td>
<td>8.77×10^{-10}</td>
<td>− 4330</td>
</tr>
<tr>
<td>R11</td>
<td>Br + BrNO$_3$ \rightarrow Br$_2$ + NO$_3$</td>
<td>4.90×10^{-11}</td>
<td>0</td>
</tr>
<tr>
<td>R12</td>
<td>Br + NO$_3$ \rightarrow BrO + NO$_2$</td>
<td>1.60×10^{-11}</td>
<td>0</td>
</tr>
<tr>
<td>R13</td>
<td>HBr + OH \rightarrow Br + H$_2$O</td>
<td>5.50×10^{-12}</td>
<td>200</td>
</tr>
<tr>
<td>R14</td>
<td>BrO + NO \rightarrow Br + NO$_2$</td>
<td>8.80×10^{-12}</td>
<td>260</td>
</tr>
<tr>
<td>R15</td>
<td>BrO + OH \rightarrow Br + HO$_2$</td>
<td>1.70×10^{-11}</td>
<td>250</td>
</tr>
<tr>
<td>R16</td>
<td>BrO + BrO \rightarrow 2Br + O$_2$</td>
<td>2.40×10^{-12}</td>
<td>40</td>
</tr>
<tr>
<td>R17</td>
<td>BrO + BrO \rightarrow Br$_2$ + O$_2$</td>
<td>2.80×10^{-14}</td>
<td>860</td>
</tr>
<tr>
<td>R18</td>
<td>BrO + HO$_2$ \rightarrow HOBr + O$_2$</td>
<td>4.50×10^{-12}</td>
<td>460</td>
</tr>
<tr>
<td>R19</td>
<td>Br$_2$ + OH \rightarrow HOBr + Br</td>
<td>2.10×10^{-11}</td>
<td>240</td>
</tr>
</tbody>
</table>

a The Arrhenius expression for rate constants is $k = A \exp(-E_a/RT)$. Kinetic data are from S. Sander et al. (2010) except for R7 (Atkinson et al., 2000), R8 (King et al., 1970), R9 and R10 (Seakins et al., 1992), and R11 (Orlando and Tyndall, 1996).
Table 2b. Tropospheric bromine chemistry in GEOS-Chem: three-body reactions

<table>
<thead>
<tr>
<th>Reaction number</th>
<th>Reaction</th>
<th>Rate coefficients<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>R20</td>
<td>$\text{Br} + \text{NO}_2 + \text{M} \rightarrow \text{BrNO}_2 + \text{M}$</td>
<td>$k_0 = 4.2 \times 10^{-31} \frac{\text{T}}{300}^{2.8} \times 10^{-11}$, $k_\infty = 2.7 \times 10^{-11}$, $F_c = 0.6$</td>
</tr>
<tr>
<td>R21</td>
<td>$\text{BrO} + \text{NO}_2 + \text{M} \rightarrow \text{BrNO}_3 + \text{M}$</td>
<td>$k_0 = 5.2 \times 10^{-31} \frac{\text{T}}{300}^{3.2} \times 10^{-12}$, $k_\infty = 6.9 \times 10^{-12}$, $F_c = 0.6$</td>
</tr>
</tbody>
</table>

^a The rate constant is calculated as $k = \left\{ \left[k_0 [M] \right] / \left[1 + k_0 [M] / k_\infty \right] \right\} \times F_c^n$, where $n = \left\{ 1 + \log_{10} \left(k_0 [M] / k_\infty \right) \right\}^{-1}$ and [M] is the air number density (molecules cm$^{-3}$).

^b from S. Sander et al. (2010); k_0 and k_∞ have units of cm6 molecule$^{-2}$ s$^{-1}$ and cm3 molecule$^{-1}$ s$^{-1}$ respectively, and T has unit of K.
Table 2c. Tropospheric bromine chemistry in GEOS-Chem: three-body reactions

<table>
<thead>
<tr>
<th>Reaction number</th>
<th>Reaction</th>
<th>J, s$^{-1}$b</th>
</tr>
</thead>
<tbody>
<tr>
<td>R22</td>
<td>CHBr$_3$ + $h\nu$ → 3Br + products</td>
<td>1.1×10^{-6}</td>
</tr>
<tr>
<td>R23</td>
<td>Br$_2$ + $h\nu$ → 2Br</td>
<td>4.2×10^{-2}</td>
</tr>
<tr>
<td>R24</td>
<td>BrO + $h\nu$ → Br + O$_3$</td>
<td>4.0×10^{-2}</td>
</tr>
<tr>
<td>R25</td>
<td>HOBr + $h\nu$ → Br + OH</td>
<td>2.3×10^{-3}</td>
</tr>
<tr>
<td>R26</td>
<td>BrNO$_2$ + $h\nu$ → Br + NO$_2$</td>
<td>1.2×10^{-3}</td>
</tr>
<tr>
<td>R27</td>
<td>BrNO$_3$ + $h\nu$ → BrO + NO$_2$</td>
<td>2.2×10^{-4}</td>
</tr>
<tr>
<td>R28</td>
<td>BrNO$_3$ + $h\nu$ → Br + NO$_3$</td>
<td>1.2×10^{-3}</td>
</tr>
</tbody>
</table>

a photolysis rates are calculated locally with the Fast-J radiative transfer model (Wild et al., 2000) using absorption cross-sections from S. Sander et al. (2010) except for R26 (Scheffler et al., 1997). All quantum yields are assumed to be 100% (Sander et al., 2010).

b global annual tropospheric mean photolysis frequencies calculated in GEOS-Chem.
Table 2d. Tropospheric bromine chemistry in GEOS-Chem: heterogeneous processes

<table>
<thead>
<tr>
<th>Reaction number</th>
<th>Reaction</th>
<th>Reactive uptake probability (γ) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>R29</td>
<td>BrNO$_3$ + H$_2$O (aerosol, cloud) \rightarrow HOBr + HNO$_3$</td>
<td>0.3 (sea salt, liquid cloud) b, 0.8 (sulfate) c</td>
</tr>
<tr>
<td>R30</td>
<td>HOBr + HBr (aqueous aerosol, ice) \rightarrow Br$_2$ + H$_2$O</td>
<td>0.2 (sea salt, sulfate), 0.1 (ice) c</td>
</tr>
</tbody>
</table>

a See Eq. (1) in text.

b IUPAC evaluation (Atkinson et al., 2000b).

c S. Sander et al. (2010); for (R30) the reactive uptake probability is applied to the limiting reactant.
Table 2e. Tropospheric bromine chemistry in GEOS-Chem: Henry’s law constants

<table>
<thead>
<tr>
<th>Species</th>
<th>$K_H(298)$, M atm$^{-1}$</th>
<th>$-\Delta H/R$, K</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBr</td>
<td>0.75 (7.5 \times 10$^{-13}$) b</td>
<td>10200</td>
<td>Schweitzer et al. (2000)</td>
</tr>
<tr>
<td>HOBr</td>
<td>6100 c</td>
<td>6010 d</td>
<td>Frenzel et al., (1998)</td>
</tr>
<tr>
<td>Br$_2$</td>
<td>0.76</td>
<td>4180</td>
<td>Dean (1992)</td>
</tr>
<tr>
<td>Br</td>
<td>1.2</td>
<td>1800</td>
<td>R. Sander (1999)</td>
</tr>
<tr>
<td>BrO</td>
<td>0.71</td>
<td></td>
<td>Frenzel et al. (1998)</td>
</tr>
<tr>
<td>BrNO</td>
<td>0.3</td>
<td></td>
<td>Frenzel et al. (1998)</td>
</tr>
<tr>
<td>BrNO$_3$</td>
<td>∞</td>
<td></td>
<td>Sander (1999)</td>
</tr>
</tbody>
</table>

a The Henry’s law constant is calculated as $K_H(T) = K_H(298) \exp \left(\frac{-\Delta H}{R} \left(\frac{1}{T} - \frac{1}{298} \right) \right)$,

where $K_H(298)$ is the value at 298 K, ΔH is the enthalpy of solution, R is the gas constant, and T is the temperature (K).

b The Henry’s Law constant is from Schweitzer et al. (2000)(Schweitzer et al., 2000); The value in parentheses is the effective Henry’s law constant K_H^* at pH 5 accounting for HBr$_{aq}$/Br$^-$ acid dissociation: $K_H^*(T) = K_H(T) \left(1 + \frac{K_a}{[H^+]^2} \right)$, where $K_a = 1 \times 10^9$ M is the acid dissociation constant (Arnaud, 1966).

c HOBr(aq)/BrO$^-$ acid dissociation is negligible under atmospheric conditions ($K_a = 1.6 \times 10^{-9}$ M (Haag and Hoigne, 1983)).

d (McGrath and Rowland, 1994)

e Br$_2$(aq) dissociation by hydrolysis can be neglected (Beckwith et al., 1996).

f Estimated by analogy with ClO (S. Sander et al., 2010).
\(^8\)BrNO\(_3\) uptake by liquid clouds is modeled by a reactive uptake probability (Table 2d) and is not limited by Henry’s law solubility. For modeling dry deposition an infinite Henry’s law constant is assumed.
Table 3. Global tropospheric ozone (O$_x$) budget in GEOS-Chema

<table>
<thead>
<tr>
<th></th>
<th>Chemical production, P(O$_x$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tg a$^{-1}$</td>
</tr>
<tr>
<td>No bromine</td>
<td>5110</td>
</tr>
<tr>
<td>With bromine</td>
<td>4910</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Chemical loss, L(O$_x$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tg a$^{-1}$</td>
</tr>
<tr>
<td>No bromine</td>
<td>4480</td>
</tr>
<tr>
<td>With bromine</td>
<td>4350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tg a$^{-1}$</td>
</tr>
<tr>
<td>No bromine</td>
<td>948</td>
</tr>
<tr>
<td>With bromine</td>
<td>879</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>STEb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tg a$^{-1}$</td>
</tr>
<tr>
<td>No bromine</td>
<td>349</td>
</tr>
<tr>
<td>With bromine</td>
<td>355</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tropospheric burden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tg</td>
</tr>
<tr>
<td>No bromine</td>
<td>370</td>
</tr>
<tr>
<td>With bromine</td>
<td>346</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>days</td>
</tr>
<tr>
<td>No bromine</td>
<td>27.8</td>
</tr>
<tr>
<td>With bromine</td>
<td>27.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[OH]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^6 molecules cm$^{-3}$</td>
</tr>
<tr>
<td>No bromine</td>
<td>1.23</td>
</tr>
<tr>
<td>With bromine</td>
<td>1.18</td>
</tr>
</tbody>
</table>

a Global annual mean budget for the odd oxygen (O$_x$) chemical family defined as $O_x \equiv O_3 + NO_2 + 2NO_3 +$ peroxacyl nitrites $+ HNO_4 + 3N_2O_5 + HNO_3 + BrO + BrNO_2 + 2BrNO_3$ (Crutzen and Schmailzl, 1983; Wu et al., 2007), with molecular weight taken to be that of ozone.

b Stratosphere-to-troposphere exchange is inferred from mass-balance: $STE = L(O_x) +$ Deposition $- P(O_x)$.
Figure 1. Mean vertical profiles of CHBr₃ and CH₂Br₂ concentrations in the northern extratropics (latitudes > 30°N) and tropics (30°S – 30°N) for April – June. GEOS-Chem model results (in red) are compared to observations from NASA aircraft campaigns (in black) including TRACE-P, INTEX-B, and ARCTAS. See Liang et al. (2010) for references on the aircraft observations. Vertical profiles have been averaged over coherent regions for individual missions and then averaged again over the latitudinal domain. Horizontal bars are standard deviations in the original data.
Figure 2. Comparison of simulated (red) and observed (black) tropospheric columns (molecules cm\(^{-2}\)) of CH\(_2\)Br\(_2\) and CHBr\(_3\), for the northern extratropics (> 30°N) and the tropics (30°S – 30°N). Column data are integrals of mean vertical profiles up to 10 km altitude from a compilation of NASA campaigns including STRAT, TRACE-P, INTEX, AVE, TC4, and ARCTAS in the northern extratropics and STRAT, PEM-Tropics, TRACE-P, INTEX, Pre-AVE, AVE, and TC4 in the tropics. References for the observations are in Liang et al. (2010). Vertical bars are the standard deviations in the original data. The dashed red line shows the model results for CHBr\(_3\) in the northern extratropics using the original aseasonal emissions from Liang et al. (2010); in order to match the observations in GEOS-Chem we applied seasonal scaling factors to CHBr\(_3\) emissions in that region (solid red line).
Figure 3. Global annual mean budget of tropospheric inorganic bromine (Br₃) in GEOS-Chem. The main reactions are indicated. Inventories are given as masses (Gg Br), with mixing ratios (ppt) in brackets. Rates are given in units of Gg Br s⁻¹. Read 6.3(-5) as 6.3x10⁻⁵.

All species are in steady state; HBr accounts for 55% of Br₃ loss by deposition, which closes the HBr budget. Sea-salt aerosol debromination is the dominant global source of Br₃ but is mainly confined to the marine boundary layer where Br₃ has a short lifetime against deposition. It accounts for 48% of the Br₃ source in the global free troposphere.
Figure 4. Zonal annual mean concentrations (ppt) of BrO, Br, and Br$_y$ in GEOS-Chem.
Figure 5. Seasonal variation of mean tropospheric BrO columns in different latitudinal bands. GOME-2 observations from Theys et al. (2011) are compared to model values from GEOS-Chem and from p-TOMCAT (Yang et al., 2010). GEOS-Chem values are shown for the actual vertical columns (red) and for vertical columns corrected by the GOME-2 air mass factors (green). Also shown are results from a sensitivity simulation without the HBr+HOBr heterogeneous reaction (R30). p-TOMCAT values are actual vertical columns. The models were sampled at 9-11 local time (LT), corresponding to the GOME-2 viewing time of ~09:30 LT. Grey shading shows the observational error on the means reported by Theys et al. (2011) and vertical bars indicate one standard deviation of their spatial averaging. The BrO mixing ratios on the right axis scale are derived from the BrO columns by dividing by the annual mean tropospheric air density columns for the corresponding latitude bin in GEOS-Chem.
Figure 6. Decrease in tropospheric ozone (ppb) from bromine chemistry. The figure shows zonal seasonal mean differences between GEOS-Chem simulations including vs. not including bromine chemistry. Shading indicates the stratosphere.
Figure 7. Mean seasonal variation of 19th-century ozone in surface air at Montsouris, France (50°N, 2°E). 1876-1886 observations re-analyzed by Volz and Kley (1988) (black) are compared to preindustrial model simulations using GEOS-Chem (red) and p-TOMCAT (blue), with bromine chemistry (solid) and without (dotted).