First application of VIIRS Day-Night band for nighttime particulate matter air quality studies

Jun Wang
Jing Zeng
Zhifeng Yang
Shouguo Ding
Yang Liu
James Szykman

Elvidge et al., 1997

NASA AQAST meeting
College Park, MD 4 June 2013
DMSP OLS

The U.S. AF(DMSP) Operational Linescan System: Unique capability to collect low-light imagery (PMT)
- Polar orbiting satellite- 3000 km swath
- Spatial Resolution: 2.7 km @ nadir
- Spectral band: 0.5-0.9 um.
- Nocturnal global coverage
- Flown since 1972
- Equator crossing time: 17:31 & 5:31
- 1992 DoD and NOAA establish digital archive for DMSP at NOAA NGDC
- No onboard calibration; 6-bit quantization

Suomi NPP VIIRS Day-Night-Band (DNB)

- The Suomi National Polar-orbiting Partnership (NPP) satellite was successfully launched on 28 October 2011.
- Visible/Infrared Imager/Radiometer Suite (VIIRS) - one of five instruments onboard NPP.
- Spectral band: 0.5-0.9 um
- Has a 3000 km swath width and nearly constant resolution (0.75 km) from nadir to limb.
- 14 orbits per day, 16-day repeat cycle; Nocturnal global coverage
- Equator crossing time: 13:30 & 1:30
- Onboard calibration; amplification for 3-level of gains (low, medium & high) respectively with 13-, 13-, & 14-bit quantization
- One of 22 bands on VIIRS
DNB spectral response function

![Graph showing spectral response function with different temperatures (T=5500K, T=3500K, T=2700K, T=1000K, T=500K) and normalizing full moon max.](image)

- $E(\lambda)$ (Wm$^{-2}$sr$^{-1}$µm$^{-1}$)
- Wavelength (μm)
- Spectral Response Function

Key temperatures and spectral maxima:
- $T=5500K$
- $T=3500K$
- $T=2700K$
- $T=1000K$
- $T=500K$

Full moon max. is indicated by the orange horizontal line.
National Ambient Air Quality Standards

NAAQS as of Oct. 2011

<table>
<thead>
<tr>
<th>Pollutant [final rule cite]</th>
<th>Primary/Secondary</th>
<th>Averaging Time</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide [76 FR 54294, Aug 31, 2011]</td>
<td>primary</td>
<td>8-hour</td>
<td>9 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-hour</td>
<td>35 ppm</td>
</tr>
<tr>
<td>Lead [73 FR 66964, Nov 12, 2008]</td>
<td>primary and secondary</td>
<td>Rolling 3 month average</td>
<td>0.15 μg/m³ (1)</td>
</tr>
<tr>
<td>Nitrogen Dioxide [75 FR 6474, Feb 9, 2010] [61 FR 52852, Oct 8, 1996]</td>
<td>primary</td>
<td>1-hour</td>
<td>100 ppb</td>
</tr>
<tr>
<td></td>
<td>primary and secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone [73 FR 16436, Mar 27, 2008]</td>
<td>primary and secondary</td>
<td>8-hour</td>
<td>0.075 ppm (3)</td>
</tr>
<tr>
<td>Particle Pollution [71 FR 61144, Oct 17, 2006]</td>
<td>PM<sub>2.5</sub></td>
<td>primary and secondary</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>PM<sub>10</sub></td>
<td></td>
<td>24-hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur Dioxide [75 FR 35520, Jun 22, 2010] [38 FR 25678, Sept 14, 1973]</td>
<td>primary</td>
<td>1-hour</td>
<td>75 ppb (4)</td>
</tr>
<tr>
<td></td>
<td>secondary</td>
<td>3-hour</td>
<td>0.5 ppm</td>
</tr>
</tbody>
</table>

12 μg/m³, FR, 15 Jan. 2013
Proposed change for 24-hour PM$_{2.5}$ NAAQS

<table>
<thead>
<tr>
<th>AQI Category</th>
<th>Index Values</th>
<th>Existing Breakpoints (1999 AQI) (μg/m3, 24-hour average)</th>
<th>Proposed Breakpoints (µg/m3, 24-hour average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>0 - 50</td>
<td>0.0 - 15.0</td>
<td>0.0 – (12.0 - 13.0)</td>
</tr>
<tr>
<td>Moderate</td>
<td>51 - 100</td>
<td>>15.0 - 40</td>
<td>(12-1 - 13.1) – 35.4</td>
</tr>
<tr>
<td>Unhealthy for Sensitive Groups</td>
<td>101 – 150</td>
<td>>40 – 65</td>
<td>35.5 – 55.4</td>
</tr>
<tr>
<td>Unhealthy</td>
<td>151 – 200</td>
<td>> 65 – 150</td>
<td>55.5 – 150.4</td>
</tr>
<tr>
<td>Very Unhealthy</td>
<td>201 – 300</td>
<td>> 150 – 250</td>
<td>150.5 – 250.4</td>
</tr>
<tr>
<td>Hazardous</td>
<td>301 – 400</td>
<td>> 250 – 350</td>
<td>250.5 – 350.4</td>
</tr>
<tr>
<td></td>
<td>401 – 500</td>
<td>> 350 – 500</td>
<td>350.5 – 500</td>
</tr>
</tbody>
</table>

Note: Parentheses indicate a range
NAAQS uses **daily and annual averages of PM$_{2.5}$**

Can we use DNB to estimate surface PM$_{2.5}$ at night?

- At night, aerosols are often mixed in a shallow nocturnal boundary layer.
- Retrieval of AOD from DNB is still in its infancy; preliminary work include Zhang et al. (2008) and Johnson et al. (2013).
- We like to make a first attempt to apply DNB for night time PM$_{2.5}$ air quality.
- Aug – Oct 2012. Focus area: Atlanta

PM$_{2.5}$: 5 ug/m3
VIIRS DNB, 7 Sep. 2012

PM$_{2.5}$: 13 ug/m3
VIIRS DNB, 8 Sep. 2012
Observed diurnal variation of PM2.5

VIIRS overpass time at night: representative of 24-hr mean PM2.5

Graphs showing diurnal variation of PM2.5 concentrations with error bars and a trend line. The x-axis represents hours of the day (EST) and the y-axis represents PM2.5 concentration in µg/m³.
Case Analysis

Moon Nights

Low PM$_{2.5}$
Large VZA \rightarrow

Moonless Nights

Nadir view \rightarrow

High PM$_{2.5}$
City lights enhance the signal for detecting PM$_{2.5}$ changes.

Using moonlight alone to detect PM2.5 appears very challenging.
Keep it simple:

- Assume that upward visible radiance at the surface is isotropic, constant, and can be estimated with maximum composite method.
- Focus on moonless, cloudless, and no-rain nights.
- Neglect multiple scattering, and estimate AOD with Beer-Lambert law.
- Assume that PM$_{2.5}$ are well mixed in a constant height H, and has constant mass extinction efficiency (Q_{mext}).

\[
\ln\left(\frac{I}{I_0}\right) = \frac{-\tau}{\cos(VZA)} = -PM_{2.5}Q_{mext}H \cos(VZA)
\]

[Graphs showing linear relationships with equations and correlation coefficients for Site, A (suburb), Site, E (Urban Center), and City center light Vs. Regional PM.]
Tackle the first assumption: parameterize Q_{mext} as a function RH

Based upon the visibility and RH measured by NWS and IMPROVE (Malm et al., 1994) parameterization. Visibility \rightarrow extinction follows Koschmieder equation.

\[Q_{mext} = \frac{3.92PM_{2.5}}{Visibility} \]
Improved results after treating RH effect

Site, A
suburb

\[Y = -0.008 \times + 0.564 \]
\[R = -0.78 \]
\[N = 15 \]

Site, E
Urban Center

\[Y = -0.013 \times + 1.245 \]
\[R = -0.71 \]
\[N = 15 \]

City center light
Vs.
Regional PM

\[Y = -0.018 \times + 2.916 \]
\[R = -0.73 \]
\[N = 15 \]
Summary

• Advantages of using VIIRS DNB to derive PM$_{2.5}$
 – Avoid day-time boundary layer cloud contamination.
 – Nocturnal boundary layer often is stable (& sometimes associated with inversion), easier to characterize.
 – Fine resolution 750 m, all the time.
 – Daily global coverage, better than MODIS.
 – Appear representative of daily-mean PM$_{2.5}$.
 – Provide unique constraint for AQ models.

• Challenges
 – City light spectra at surface: highly variable, not well studied.
 – City light BRDF at surface: not well studied.
 – RTM modeling (moonlight + city light).
 – Currently, DNB georeference is not terrain corrected.

Overall, an exciting field with more discoveries and applications to come!
VIIRS also offers unique capability for monitoring PM2.5 at daytime
<table>
<thead>
<tr>
<th>Band number/gain</th>
<th>VIIRS wavelength (µm)</th>
<th>Lee et al., 2006.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1, dual</td>
<td>0.412</td>
<td>0.742 × 0.259</td>
</tr>
<tr>
<td>M2, dual</td>
<td>0.445</td>
<td>0.742 × 0.259</td>
</tr>
<tr>
<td>M3, dual</td>
<td>0.488</td>
<td>0.742 × 0.259</td>
</tr>
<tr>
<td>M4, dual</td>
<td>0.555</td>
<td>0.742 × 0.259</td>
</tr>
<tr>
<td>I1, single</td>
<td>0.640</td>
<td>0.371 × 0.387</td>
</tr>
<tr>
<td>M5, dual</td>
<td>0.672</td>
<td>0.742 × 0.259</td>
</tr>
<tr>
<td>M6, single</td>
<td>0.746</td>
<td>0.742 × 0.776</td>
</tr>
<tr>
<td>I2, single</td>
<td>0.865</td>
<td>0.371 × 0.387</td>
</tr>
<tr>
<td>M7, dual</td>
<td>0.865</td>
<td>0.742 × 0.259</td>
</tr>
<tr>
<td>DNB, multiple</td>
<td>0.7</td>
<td>0.742 × 0.742</td>
</tr>
<tr>
<td>M8, single</td>
<td>1.24</td>
<td>0.742 × 0.776</td>
</tr>
<tr>
<td>M9, single</td>
<td>1.38</td>
<td>0.742 × 0.776</td>
</tr>
<tr>
<td>M10, single</td>
<td>1.61</td>
<td>0.742 × 0.776</td>
</tr>
<tr>
<td>I3, single</td>
<td>1.61</td>
<td>0.371 × 0.387</td>
</tr>
<tr>
<td>M11, single</td>
<td>2.25</td>
<td>0.742 × 0.776</td>
</tr>
<tr>
<td>M12, single</td>
<td>3.70</td>
<td>0.742 × 0.776</td>
</tr>
<tr>
<td>I4, single</td>
<td>3.74</td>
<td>0.371 × 0.387</td>
</tr>
<tr>
<td>M13, dual</td>
<td>4.05</td>
<td>0.742 × 0.259</td>
</tr>
</tbody>
</table>
Surface PM$_{2.5}$ Estimate

Use of VIIRS reflectance:
- reduces the model bias from -5.6 μg/m3 to 3 μg/m3
- increase R^2 from 0.69 to 0.87.
Acknowledgement:
NASA Suomi-NPP program & NASA Applied Science program.

Also thank:
Jingfeng Huang, NOAA/NESDIS & UMD
Steve Miller, CSU
Edward Hyer, NRL
Shoba Kondragunta – NOAA/NESDIS
Hai Zhang, NOAA/NESDIS & UMD
Ray Hoff, UMBC
Rober Levy, NASA
Xiaoguang Xu, UNL
Thomas Polivka, UNL
Ambrish Sharma, UNL

for various supports and useful discussions.