OMI NO$_2$ Product and its Application for Evaluating AQ Models

Lok Lamsal (GESTAR/USRA, NASA/GSFC)
Nickolay Krotkov, Kenneth Pickering, Bryan Duncan, James Gleason (NASA/GSFC)
Edward Celarier (GESTAR/USRA, NASA/GSFC)
William Swartz (APL/JHU)
Eric Bucsela (SRI International)
Randall Martin, Sajeev Philip (Dalhousie University)
Hitoshi Irie (Chiba University)
Travis Knepp (NASA/LaRC)
Overview

1. Algorithm summary
 a) Slant columns
 b) Stratospheric columns
 c) Tropospheric columns

2. Validation of tropospheric NO$_2$
 a) Ground-based MAX-DOAS and Pandora
 b) In situ aircraft
 c) In situ surface measurements

3. Model-satellite comparison
Slant column NO$_2$ by radiance fitting using DOAS

I_o (solar) + I_B

405-465 nm

NO$_2$

Viewing geometry

{}
Retrieval of stratospheric and tropospheric NO$_2$

- Viewing and solar angles
- Cloud
 - Reflectivity
 - NO$_2$ profile shapes, temperature
 - Topography

Step I
- AMF computation
 - A_{strat}

Step II
- Destriping

Step III
- Stratospheric NO$_2$

Step IV
- Tropospheric NO$_2$

- Level 3
 - Gridded
 - Cloud fraction < 0.2
Errors in tropospheric NO\textsubscript{2} retrievals

- Slant column
- Tropospheric NO\textsubscript{2} product
- Stratospheric NO\textsubscript{2}

AMF

- Albedo
- Profile shape
- Cloud fraction
- Cloud pressure
- Surface pressure
- Aerosols

Total retrieval error

- \(\sim 30\% \) clear sky
- \(> 50\% \) cloudy

- Slant column: \(\sim 0.5 \times 10^{15} \) molec cm-2
- Stratospheric NO\textsubscript{2}: \(\sim 0.2 \times 10^{15} \) molec cm-2
Validation of tropospheric NO$_2$ retrievals is a challenge

Variable sources, short lifetime, and large spatial gradient makes NO$_2$ validation difficult.

Suitable validation datasets are limited

- **In situ aircraft**: Excellent, but expensive, few, extrapolation problem
- **MAX-DOAS**: Promising, but few
- **Pandora**: Valuable, but it is point measurement and provides total column. Dense network and long-term data helpful.
- **In-situ surface measurements and bottom-up emissions**: Great information, but difficult to compare with satellite columns
- **NO$_2$ lidar and balloon sonde**: Promising, but evolving
Validation results: Comparison with Pandora measurements

- Data period: 2010-2012
- Agreement better in winter and fall
- Difference likely due to:
 - Local sources
 - Inconsistent treatment of temperature effect in NO₂ cross-section
 - Pandora has largest uncertainty in summer due to absolute calibration errors
Validation results: Comparison with aircraft measurements

DISCOVER-AQ (July, 2011)

- Fairhill, Aldino, Padonia, Beltsville agree within 15%.
- Edgewood and Essex: location not great for comparison.
Validation results: Comparison with MAX-DOAS and in-situ OMI with MAX-DOAS

Japan

Hedo
Tsukuba

OMI with in-situ surface NO₂

GA, USA
Comparison between model simulation and OMI retrievals

Comparison 1:

\[\text{Model as is} \quad V_{\text{Model}} \quad \text{vs} \quad V_{\text{OMI}} \]

Comparison 2:

\[\text{Model as is} \quad V_{\text{Model}} \quad \text{vs} \quad V_{\text{OMI}} \]

\[\text{OMI retrieval, using model AMF} \]

\[\text{AMF}_{\text{Model}}^{\text{trop}} = \frac{\sum W_i \times P_i^{\text{Model}}}{\sum P_i^{\text{Model}}} \]

\[V_{\text{OMI}} = \frac{S_{\text{trop}}}{\text{AMF}_{\text{Model}}^{\text{trop}}} \]

\[\text{polluted NO2 profile shape factor} \]

\[440 \text{ nm} \]

\[\text{nadir surf alb} = 0.05 \quad \text{sza} = 42 \text{ deg} \]
Comparison between model simulation and OMI retrievals

Comparison 2

Due to profile shapes only
A-priori NO\textsubscript{2} profiles and OMI NO\textsubscript{2} retrievals

Aircraft – P3B (DISCOVER-AQ)

GMI simulation
OMI NO$_2$ changes in

North America

East Asia