Source Impact Forecasting

Yongtao Hu1, M. Talat Odman1, Michael E. Chang2 and Armistead G. Russell1

1School of Civil & Environmental Engineering,
2Brook Byers Institute of Sustainable Systems
Georgia Institute of Technology

With thanks to Pius Lee and the NOAA ARL Forecasting Team

AQAST Meeting, December 3rd, 2014
Georgia Institute of Technology
Motivation

• Air quality forecasting is an integral part of air quality management, especially for dynamic management.
 – Source specific information, valuable for dynamic management, are missing from operational air quality forecasting practice.

• Improving forecasting accuracy will involve:
 – More accurate emissions
 • Emission inventories are typically at least 4 years behind and “growth factors” are outdated
 – Wildland fire are becoming increasingly important contributors to PM and ozone.
Objective

• To provide information that can better assist dynamic air quality management

 – Forecast source impacts, in addition to air quality, to provide extra information that may be valuable for dynamic air quality management

 – Improve air quality and source impact forecasting accuracy using near real time measurements through dynamic adjustments of emissions inventories
Current Hi-Res Forecasting System

Hi-Res Modeling Domains

- Based on SMOKE, WRF and CMAQ models
- Forecasting ozone and PM$_{2.5}$ since 2006
- 48-hour forecast at 4-km resolution for Georgia and 12-km for most of Eastern US
- Used by GA EPD assisting their AQI forecasts for Atlanta, Columbus and Macon
- Potentially useful for other states
Hi-Res performance during 2006-2013 ozone seasons for Metro Atlanta

Ozone

PM$_{2.5}$

<table>
<thead>
<tr>
<th></th>
<th>2006-2008</th>
<th>2009-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNB</td>
<td>20%</td>
<td>-10%</td>
</tr>
<tr>
<td>MNE</td>
<td>25%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Georgia Institute of Technology
Newly Built Hi-Res2 Forecasting System

Forecasting Air Quality for CONUS
(https://forecast.ce.gatech.edu open since November 28th)

- Updated base emissions to 2011NEI
- WRF3.6.1 and CMAQv5.02 used
- 72-hour forecasts at 4-km resolution for Georgia and surrounding states, 12-km for most of Eastern states and 36-km for the rest of CONUS

Georgia Institute of Technology
Forecasting Source Impacts at 4-km for Georgia (https://forecast.ce.gatech.edu open since November 28th)
Brute Force vs. DDM-3D and HDDM-3D

\[S^{(1)} = \frac{\partial C}{\partial \varepsilon} \]

\[S^{(2)} = \frac{\partial^2 C}{\partial \varepsilon^2} \]

\[S^{(1)} \approx \frac{C_B - C_A}{\Delta \varepsilon} \]
Uncertainties in emissions degrade both air quality and source impacts forecasting
Currently working with PM$_{2.5}$ measurements at ~20 sites in Georgia

An emissions and air quality auto-correction system utilizing near real-time satellite and surface observations

- Minimizes the differences between forecasted and observed concentrations
- Minimal adjustment to source emissions
- Uses impacts of emission sources calculated by CMAQ-DDM-3D
 - Source impacts can be used for dynamic air quality management (e.g., traffic and fires)
Inverse Model Formulation

• Solve for \(R_j \) that minimizes \(\chi^2 \)

\[
\chi^2 = \sum_{i=1}^{N} \left[\frac{\left(c_i^{\text{obs}} - c_i^{\text{sim}} - \sum_{j=1}^{J} S_{i,j} (R_j - 1) \right)^2}{\sigma_{c_i^{\text{obs}}}^2} \right] + \Gamma \sum_{j=1}^{J} \frac{(\ln(R_j))^2}{\sigma_{\ln R_j}^2}
\]

- \(\chi_{Ci}^2 \): Remaining Error
- \(\chi_{Rj}^2 \): Amount of Change in Source Strengths

DDM-3D calculated sensitivity of concentration \(i \) to source \(j \) emissions

emission adjustment ratio

weight

L-BFGS algorithm is used for the optimization (R package nloptr)
Example of selecting appropriate Γ

L-curve plot
Offline Test 1: week1 Dec.1-7, 2013 & week2 Dec. 08-14, 2013

<table>
<thead>
<tr>
<th>Dec. 1-7, 2013</th>
<th>Area</th>
<th>On-road</th>
<th>Non-road</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment</td>
<td>0.17</td>
<td>0.83</td>
<td>0.85</td>
<td>0.97</td>
</tr>
</tbody>
</table>

without emissions adjustments

Dec. 11, 2013 PM$_{2.5}$ Concentration

with emissions adjustments

Dec. 11, 2013 PM$_{2.5}$ Concentration

<table>
<thead>
<tr>
<th>Dec. 8-14, 2013</th>
<th>Obs (ug/m3)</th>
<th>Sim (ug/m3)</th>
<th>NFE</th>
<th>NFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>4.64</td>
<td>10.04</td>
<td>86%</td>
<td>85%</td>
</tr>
<tr>
<td>Emis adjusted</td>
<td>"</td>
<td>5.62</td>
<td>54%</td>
<td>39%</td>
</tr>
</tbody>
</table>
Jul. 6-12, 2011

<table>
<thead>
<tr>
<th>Area</th>
<th>On-road</th>
<th>Non-road</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment</td>
<td>3.34</td>
<td>1.09</td>
<td>1.46</td>
</tr>
</tbody>
</table>

without emissions adjustments

Jul. 15, 2011 PM$_{2.5}$ Concentration

with emissions adjustments

Jul. 15, 2011 PM$_{2.5}$ Concentration

Jul. 13-19, 2011

<table>
<thead>
<tr>
<th>Obs (ug/m3)</th>
<th>Sim (ug/m3)</th>
<th>NFE</th>
<th>NFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>14.39</td>
<td>8.67</td>
<td>54%</td>
</tr>
<tr>
<td>Emis adjusted</td>
<td>"</td>
<td>14.92</td>
<td>44%</td>
</tr>
</tbody>
</table>
Concluding Remarks

- Hi-Res2 operational with source impact forecasting
 - New in air quality forecasting practice
 - Supports dynamic air quality management through providing source specific information
 - Currently for traffic and power plant emissions only, can add more
 - Fire emission impact forecasts underway for dynamic prescribed-burn management (Talat’s talk, next)

- Hi-Res2 operational with dynamic emissions adjustments
 - Online performance evaluation is underway
 - Dynamic emissions adjustment significantly improves PM forecast accuracy in off-line testing
 - Expansion to include other species measurements underway
 - Improved approach to assimilating AOD and PM measurements underway (Utilizing data-fused fields)
Acknowledgements

• NASA
• Georgia EPD
• Georgia Forestry Commission

US Forest Service
– Scott Goodrick, Yongqiang Liu, Gary Achtemeier

Environmental Protection Agency (EPA)