DYNAMO: DYnamic Inputs of Natural Conditions for Air Quality MODELS

AQAST Tiger Team
Daniel Cohan, Loretta Mickley, Richard McNider, Arastoo Pour Biazar, Bryan Duncan
Key Additional Participants in DYNAMO

Air Quality Management partners:
• EPA: Jesse Bash, Pat Dolwick, Chris Misenis
 – 2011 CMAQ CONUS simulation
• Texas Commission on Environmental Quality: Mark Estes
• California Air Resources Board: Jeremy Avise

Students: Ben Lash (Rice), Erin Chavez Figueroa (Rice), Quazi Rasool (Rice), and Lulu Shen (Harvard)

Postdoc: Dr. Rui Zhang (Rice)
DYNAMO Objectives

- **Stratospheric ozone**: Satellite-based daily varying columns, to replace weekly averages
 - GEOS-Chem simulations showed small impacts in summer, when stratospheric O_3 is less variable

- **Clouds & Radiation**: GOES-based clouds for photolysis rates and photosynthetically active radiation (PAR)
 - Presentation by Arastoo Pour Biazar

- **Interannual variability in biogenic VOC**
 - Influence of drought, temperature, and PAR

- **Soil NO**: Implement & extend BDSNP scheme
 - Impacts on NO_2 columns, ozone, and PM
WRF and MEGAN runs for 2005 and 2007 to test influence of drought and T on isoprene
Year 2005 and 2007 MEGAN simulations to test sensitivities to meteorological and LAI variability

- **Compute partial sensitivities**
 - Leaf Area Index
 - With constant T and PAR
 - Radiation (PAR)
 - With constant LAI
 - Temperature
 - With constant LAI

\[
\frac{\Delta ISOP}{\Delta LAI} = \left(\frac{ISOP,2007 - ISOP,2005}{LAI,2007 - LAI,2005} \right)
\]

\[
\frac{\Delta ISOP}{\Delta PAR} = \left(\frac{ISOP,UMDPAR,2005 - ISOP,WRFPAR,2005}{PAR,UMD,2005 - PAR,WRF,2005} \right)
\]

\[
\frac{\Delta ISOP}{\Delta T} = \left(\frac{ISOP,2007 - ISOP,2005}{T,2007 - T,2005} \right)
\]

- **Evaluations by biome over four regions**
Sensitivities of isoprene emissions to LAI, PAR, and temperature

S CA July

NE US July

E TX July

SE US July
2005→2007 change in MEGAN isoprene (blue shows change due to ΔPAR)

$$
\frac{\Delta ISOP}{\Delta PAR} = \left(\frac{ISOP, UMD, PAR, 2005 - ISOP, WRF, PAR, 2005}{PAR, UMD, 2005 - PAR, WRF, 2005} \right) \times \left(\frac{PAR, WRF, 2007 - PAR, WRF, 2005}{PAR, WRF, 2005} \right)
$$
Fractional reduction in MEGAN BVOC emissions due to using Pinker satellite PAR vs. WRF

July 2007 simulation

Isoprene

Monoterpenes

Sesquiterpenes
New Soil NO Emissions Scheme in CMAQ

• Berkeley Dalhousie Soil NO Parameterization (BDSNP)
 – Introduced by Hudman et al. 2012; In GEOS-Chem
• Ben Lash (Rice) implemented in CMAQ (inline biogenics)
 – Provided to EPA (J. Bash) for upcoming CMAQ release
 – Also shared with UMD and other interested parties
• Base-level emissions factors for each land cover category based on Steinkamp and Lawrence 2011
• Fertilizer and N deposition add N to soil reservoir
• Meteorology influences emissions
 – Soil moisture and T from land surface model, instead of rainfall and air T
 – Pulse of emissions when rain follows dry period
Soil NO emissions components in BDSNP (CMAQ for CONUS 2005)

- Nationally, biome factor is biggest contributor
- Fertilizer >50% in Midwest, San Joaquin Valley
- Deposition >50% in southern California, Atlanta
Soil NO emissions in CMAQ simulation for CONUS 2005

ngN/m²/s monthly averages

Month

CMAQ
BDSNP

CMAQ
Yienger & Levy
BDSNP >> Y&L for Soil NO Emissions
(Change in NO emissions per cell for Aug. 2005)

BDSNP ~ 2x Y&L soil NO in summer, but with very different spatial patterns and responses to meteorology -- Can’t just scale Y&L.
Schemes have very different assumed responses of soil NO to temperature and moisture

- Hudman et al. 2012
Fractional change in NO$_2$ columns due to BDSNP
CMAQ_BDSNP overpredicts OMI NO$_2$ columns, but BDSNP not responsible in California and Northeast.

Monthly averages (*1015 molecules/cm2) in OMI v. 2.1 (from L. Lamsal) and CMAQ_BDSNP for 2005.

<table>
<thead>
<tr>
<th>Month</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>1.50</td>
<td>1.23</td>
<td>1.22</td>
<td>1.04</td>
<td>1.06</td>
</tr>
<tr>
<td>CMAQ-BDSNP</td>
<td>1.71</td>
<td>1.50</td>
<td>1.42</td>
<td>1.43</td>
<td>1.43</td>
</tr>
</tbody>
</table>
Changes in OH and O_3, BDSNP – YL
(August 2005 avg.)

August 2005 CMAQ simulation
Impact of BDSNP on O_3 sensitivity to 10% anthropogenic NO$_x$ reduction

On a fractional basis, higher soil NO reduces sensitivity to anthropogenic NO$_x$ by 10-40% over much of Midwest and Northwest.
Rain induced pulsing event on July 3, 2011 in CMAQ-BDSNP

Note: BDSNP assumes a pulsing event occurs when rain follows a dry period, activating soil microbes and causing enhanced soil NO emissions.
BDSNP – YL for NO emissions, NO$_x$, ozone, and OH: July 3, 2011
BDSNP can increase PM$_{2.5}$ by >1 ug/m3, largely due to particulate water (7/3/2011)
Fractional increase in NO$_2$ column due to BDSNP

![Map showing NO$_2$ Column fraction (BDSNP–YL95)/(YL95) on July 3, 2011 at 00:00:00 UTC. The map illustrates the variation across the United States with values ranging from -0.2 to 1.3. The minimum value is at (103, 129) with a value of -0.1, and the maximum value is at (177, 140) with a value of 1.2.](image-url)
Is BDSNP soil NO still too low?

- Vinken (ACP 2014) estimates 12.9 ± 3.9 TgN/yr from OMI, vs 9.6 in BDSNP
 - Out of 51 TgN total NO\textsubscript{x} globally
 - Used DOMINO v. 2.0 for OMI NO\textsubscript{2}
Is BDSNP too high over N. America?

- Vinken OMI-based estimate was lower than BDSNP over central US in 2005
- Hudman assumes 1.5% of fertilizer N is emitted as NO, vs. 0.5-1% in most studies
- N. American biome emission factors from Steinkamp are lower than global used by BDSNP

Vinken et al., ACP 2014
Intended Extensions of BDSNP Soil NO

• EPIC dynamic fertilizer to replace Potter et al. 2010
• Test N. America biome factors and lower fertilizer factor
• More evaluations vs. ambient & satellite NO₂
 – Are the pulsing events “real” and observed by OMI??
• Offline version of BDSNP for direct creation of soil NO emissions using WRF or other meteorology data
 – Requires assumptions about N-deposition
• Add soil emissions of HONO (Su et al. 2011)
• Test sensitivities to agricultural practices (e.g., fertilizer application, biochar, etc.)
• Ultimate goal: More mechanistic model to simulate all soil N emissions (NO, NH₃, HONO, N₂O, etc.)
Extra Slides
Impact of UAH satellite PAR on emissions
Sept. 2013 simulation

Base Emissions from MEGAN

Satellite (UAH) minus WRF

Isoprene

(a-1) Average daily mean Isoprene emission rate (mol/s) using modeled PAR (WRF)

(a-2) Relative difference of MEGAN Isoprene emission rate using PAR between satellite retrieval (UAH) and model (WRF)

Monoterpines

(b-1) Average daily mean Monoterpene emission rate (mol/s) using modeled PAR (WRF)

(b-2) Relative difference of MEGAN Monoterpene emission rate using PAR between satellite retrieval (UAH) and model (WRF)
Isoprene Change due to PAR 2005 to 2007

\[
\frac{\Delta ISOP}{\Delta PAR} = \left(\frac{ISOP, UMD, PAR, 2005 - ISOP, WRF, PAR, 2005}{PAR, UMD, 2005 - PAR, WRF, 2005} \right) \times \left(\frac{PAR, WRF, 2007 - PAR, WRF, 2005}{PAR, WRF, 2005} \right)
\]
Motivation: Pinker (UMD) satellite-based insolation better matched observations than WRF, but no longer available.
Change in ozone concentrations due to BDSNP
ASO4 (BDSNP–YL95)

July 3, 2011 00:00:00 UTC
Min (161, 142) = -0.039, Max (275, 120) = 0.115
OH(BDSNP–YL95)

July 3, 2011 00:00:00 UTC

Min (158, 128) = -3.026E-8, Max (169, 125) = 8.203E-8
Changes in OH and O$_3$, BDSNP – YL
(August 2005 avg.)

August AVG OH BDSNP - YL

August AVG O3 BDSNP - YL

August 2005 CMAQ simulation