On the Temporal Resolution of Atmospheric Transport

(Could shorter time step/higher resolution in your simulation ever be bad?)

Shiliang Wu, Michigan Tech

Aditya Kumar (now at U. of Wisconsin)

Yaoxian Huang (now at Wayne State U)

IGC 9, Harvard University
May. 8, 2019
Arctic NOx Spike – Chemistry or Transport?

(Long-time puzzle; 1st reported at IGC5, 2011)
GC simulated NOx at Summit (in ppb)

- Transport Time Step: 30 Min
- Transport Time Step: 360 min
- Transport Time Step: 60 min
- Transport Time Step: 90 min

Time (Days):
- Nov
- 1-Dec
- 6-Dec
- 11-Dec
- 16-Dec
- 21-Dec
Higher temporal reso. could actually cause trouble in certain cases

\[
\frac{\Delta x}{\Delta t} \gg u \rightarrow \text{artificial diffusion}
\]

Less \(\Delta t \) \(\rightarrow \) more diffusion

This is particularly important for remote regions
So what value should be used for Δt?

Historically in GEOS-Chem (prior to v11-01):

- $\Delta T(\text{transport})$ was a function of the grid resolution
 - $= 30$ min for $4^\circ \times 5^\circ$;
 - $= 15$ min for $2^\circ \times 2.5^\circ$
 - $= 10$ min or smaller for nested grid simulations (0.5° resolution or finer)
- $\Delta T(\text{chemistry})$ was usually set to 60 minutes, for many grid resolutions.
- This may not have always been the optimal setting.

Our most recent recommendation (cf. Philip et al 2016) is:

- $\Delta T(\text{chemistry}) = 20$ min
- $\Delta T(\text{transport}) = 10$ min

But, use caution if –

a) you are looking at remote areas (in our case, it has to use >60 min to remove the artificial spike);

b) you see weird thing can’t be explained by other processes