GEOS-Chem Adjoint Inversion of SO_2 and NO_x Emissions with Multi-sensor (OMPS, OMI, and VIIRS) Data over China

Yi Wang1, Jun Wang1
Xiaoguang Xu2, Daven Henze3, Zhen Qu3
Meng Zhou1, Wei Wang4, Cui Ge5

1The University of Iowa, 2University of Maryland - Baltimore County, 3University of Colorado Boulder, 4China National Environmental Monitoring Center, 5South Coast Air Quality Management District

IGC9, May 6-9, 2019
Satellite view of SO\textsubscript{2} and NO\textsubscript{2} and forecasts

Tropospheric NO\textsubscript{2} [1015 molec/cm2] over China

(Georgoulias et al., 2018)

SO\textsubscript{2} forecasts

(a) Slant column SO\textsubscript{2} forecast

(b) Surface SO\textsubscript{2} forecast

(Wang et al., 2016)
Data and Method

Inverse Modeling

- Satellite vs. model
- GEOS-Chem adjoint
- Inverse theory

Model SO_2, NO_2

Simulation

Emission sources

Inconsistency (cost function)

Adjust emission

Validated with

Validation

- NASA OMI SO_2, NO_2

- Validation with in situ observations

Downscale emissions
GEOS-Chem Simulation, and forecasts

Validated with

VIIRS nighttime light

NASA OMI SO_2, NO_2
SO₂ and NOₓ emissions (October 2013)

Prior (MIX, 2010)

SO₂
1166 Gg S/mon

NOₓ
714 Gg N/mon

Posterior

SO₂
748 Gg S/mon

NOₓ
672 Gg N/mon

(Posterior – Prior) / Prior

SO₂
-35.8%

NOₓ
-5.8%
Comparisons of OMPS based SO$_2$ and NO$_2$ with OMI
Downscale posterior SO$_2$ emissions

- Assuming the spatial distribution of prior emission at a resolution of 0.25°x0.3125° is correct, but systematic bias exist.

- Posterior 2°x2.5° emission is downscaled according to the spatial distribution of prior emission at a resolution of 0.25°x0.3125°

\[
E_{f,i}^{\text{post}} = E_{c}^{\text{post}} \times \frac{E_{f,i}^{\text{prior}}}{\sum_i E_{f,i}^{\text{prior}}}
\]
Validation with in situ SO$_2$ observations

- Bias decreases from 38 µg/m3 to -3 µg/m3

- Root mean square error decreases from 60 µg/m3 to 25 µg/m3

- Standard deviation decreases from 63 µg/m3 to 20 µg/m3, which is more consistent with observation (18 µg/m3)
Downscale posterior NO\textsubscript{x} emissions

\[E_{f,i}^{\text{post}} = E_{c}^{\text{post}} \times \frac{E_{f,i}^{\text{prior}}}{\sum_i E_{f,i}^{\text{prior}}} \]

TROPOMI NO\textsubscript{2} VS VIIRS nighttime light

NO\textsubscript{2} VS nighttime light

\begin{align*}
R &= 0.66 \ (p < 0.01) \\
N &= 311843 \\
y &= 0.07x + 0.15
\end{align*}
Validation with in situ NO\(_2\) observations

- Linear correlation coefficient increases from 0.46 (prior) to 0.61 (MIX emission downscale) and 0.58 (nightlight emission downscale)

- Root mean square error decreases from 12 µg/m\(^3\) (prior) to 10 µg/m\(^3\) (MIX emission downscale) and 11 µg/m\(^3\) (nightlight emission downscale)
Apply top-down emissions to next month for forecast

SO₂

Bias: 44 μg/m³
RMSE: 78 μg/m³

NO₂

Bias: -7 μg/m³
RMSE: 37 μg/m³
All the three future GEO satellite will provide hourly retrievals of SO$_2$ and NO$_2$, which will facilitate optimization of SO$_2$ and NO$_x$ emissions at high temporal resolution.
Conclusions and acknowledgement

• Both posterior SO$_2$ and NO$_x$ emissions constrained by OMPS retrievals are smaller than MIX prior emissions in October 2013, respectively.

• Posterior simulation of SO$_2$ and NO$_2$ vertical column densities are in better agreement with OMI retrievals than prior simulation.

• Coarse resolution posterior emissions are downscaled to simulate surface SO$_2$ and NO$_2$ at fine resolution and show better result when validating against in situ observation.

• Posterior emissions are applied to next month to improve air quality forecast.

• This research is supported by funding from NASA.