Anthropogenic control over wintertime oxidation of atmospheric pollutants:

the importance of incorporating atypical radical precursors

In winter, OH is less important to the radical budget:

Relative importance of radical production from HCHO, ClNO₂, HCHO increases
In winter, OH is less important to the radical budget:

Relative importance of radical production from HCHO, ClNO₂, HCHO increases
In winter, OH is less important to the radical budget:

Relative importance of radical production from \(HCHO, ClNO_2 \), \(HCHO \) increases
In winter, OH is less important to the radical budget:

Relative importance of radical production from HCHO, ClNO₂, HCHO increases
In winter, OH is less important to the radical budget:

Relative importance of radical production from HCHO, ClNO$_2$, HCHO increases
Research Flight 8:

CINO₂ (ppbv) & J O₃ (10⁻⁵ s⁻¹)

3/1/15 6:38am EST
Research Flight 8: *Observed Instantaneous Production of Radicals*

- ClNO_2 60-80% of the total primary radical source throughout the morning in MBL
• ClNO₂ 60-80% of the total primary radical source throughout the morning in MBL

• Steep drop off in ClNO₂ radical source at altitudes > 1000 m
Modeling the day following peak ClNO$_2$ observations:

- Initialize model at 6:40am, with WINTER measurements, simulation with & without Cl$_y$ chemistry (Riedel et al., 2013)
Modeling the day following peak ClNO$_2$ observations:

- Initialize model at 6:40am, with WINTER measurements, simulation with & without Cl$_y$ chemistry (Riedel et al., 2013)

- Excluding reactions with Cl$_y$ causes underestimate in the integrated daily radical budget the following day of 1.8 ppbv, or a factor of 3.75
Local secondary impacts of Cl• Chemistry on O₃ and HCHO:
Local secondary impacts of Cl• Chemistry on O₃ and HCHO:

Including Cl_y reactions causes:

- **114% (0.6 ppbv)** enhancement in HCHO
- **60% (4.7 ppbv)** enhancement in O₃
GEOS-Chem Simulations:

1. **“Standard” emissions & chemistry**
 - Updated N_2O_5 production following (Shah et al., 2018;).
 - No ClNO$_2$ formation ($\phi_{\text{ClNO}_2}=0$).

GEOS-Chem v10-01:
- GEOS - FP: $0.25 \times 0.3125^\circ$
- Simulation period January 16 – March 31, 2015 (Jaeglé et al., 2018)
- Simple SOA scheme

![Map of HCHO: Standard Emissions](image)
GEOS-Chem Simulations:

GEOS-Chem v10-01:
- GEOS - FP: 0.25 x 0.3125°
- Simulation period January 16 – March 31, 2015 (Jaeglé et al., 2018)
- Simple SOA scheme

1. **“Standard” emissions & chemistry**
 - Updated N$_2$O$_5$ production following (Shah et al., 2018;)
 - No ClNO$_2$ formation (ϕ_{ClNO_2}=0)

2. **“High-Oxidant”:**
 - Increased anthropogenic emissions of HCHO (constrained to WINTER obs.)
 - Allow production of CINO$_2$
Global impacts of neglecting, *incorrectly estimating* atypical radical precursors:

- 16.5% - 50% underestimates in OH
- 1-5% underestimates in O_3 (~2 ppbv)

All impacts are underestimated given factor of 2 underestimate in simulated $[\text{ClNO}_2]$
Global impacts of neglecting, *incorrectly estimating* atypical radical precursors:

- 16.5% -50% underestimates in OH
- 1-5% underestimates in O$_3$
 (~2 ppbv)

All impacts are underestimated given factor of 2 underestimate in simulated [ClNO$_2$]

Key Conclusions:

- In the polluted winter BL, ClNO$_2$ is *the* dominant radical source, with significant primary & secondary chemical impacts
- Critical to include & correctly estimate atypical radical precursors in models