Reduced-rank Jacobians: Decreasing the computational cost of high resolution analytic inversions

Hannah Nesser1 (hnesser@g.harvard.edu), Daniel Jacob1
1Harvard University

Introduction

- The Tropospheric Monitoring Instrument (TROPOMI) provides daily, global column methane concentration retrievals in 7 x 7 km² pixels.
- Methane emissions can be inferred at high-resolution by inverting these observations with a chemical transport model (CTM). A Bayesian inversion accounts for errors and, when the CTM is linear, gives a closed-form solution for the posterior emissions estimate.
- The computational cost of this solution is limited by the dimension \(n \) of the emission (state) vector due largely to the cost of characterizing the linear relationship between emissions and observations, given by the Jacobian \(K \).
- We propose an iterative method of constructing \(K \) that reduces computational cost by finding the model response to the eigenvectors of the information content rather than individual state vector elements.

Reduced-rank Jacobians

- \(K \) is often constructed by perturbing each of the \(n \) state vector elements and finding the model response, requiring \(n+1 \) model runs.
- Not all state vector elements contribute equal information to the inversion. An eigendecomposition of the averaging kernel \(A \) gives the patterns of information content, and \(k \ll n \) eigenvectors explain most of the variance of the inverse system.
- Perturbing \(k \ll n \) eigenvectors reduces the number of model runs needed to construct \(K \). This yields a reduced-dimension Jacobian, which must be transformed to the full-dimension space.
- \(A \) is a function of \(K \), so it is necessary to iteratively update \(K \) from an initial estimate.

Algorithm

- We propose an iterative method to construct \(K \) that refines an initial estimate in areas with high information content:
 i. Initialize the Jacobian \(K_0 \).
 ii. Calculate \(\Pi, \Gamma, \Gamma^* \).
 iii. Perturb \(k \ll n \) eigenvectors and find the reduced-dimension Jacobian \(K_{\text{red}} \).
 iv. Find \(K_{i+1} \) by minimizing \(||K_i - K_{i+1}|| \) subject to \(||\Gamma^* K_i - K_{\text{red}}|| = 0 \).
 v. Return to ii and iterate until convergence.

Conclusions

- Reduced-rank Jacobians will reduce the computational cost of high-resolution analytic Bayesian inversions by decreasing the number of perturbation model runs.
- The reduced-rank Jacobian can be used in reduced-rank inversions to further reduce computational cost.
- An a posteriori filter can be applied to account for errors in the reduced-rank Jacobian.

References