Top-down constraints on global N$_2$O emissions at optimal resolution

N$_2$O Lifetime: ~127 years

Soils [107 molec cm$^{-2}$ s$^{-1}$]

- 11.0 Tg N
 - EDGARv2 + Saikawa et al. (2013)

- 2.3 Tg N
 - EDGARv2

Industrial [107 molec cm$^{-2}$ s$^{-1}$]

Biomass Burning [107 molec cm$^{-2}$ s$^{-1}$]

- 0.6 Tg N
 - EDGARv2

Ocean [107 molec cm$^{-2}$ s$^{-1}$]

- 3.5 Tg N

2011 a priori flux = 17.4 Tg N

Kelley C. Wells, Dylan B. Millet, Nicolas Bousserez, Daven K. Henze, Timothy J. Griffis, Eri Saikawa

IGC8, 2 May 2017

NOAA AC4
N$_2$O inversion system: April 2010-April 2012

\[J(x) = (H(x) - y)^T S_y^{-1} (H(x) - y) + (x - x_a)^T S_a^{-1} (x - x_a) \]
x = Total land and ocean emissions, monthly resolution

Three inversion frameworks:
1. **Standard**: BFGS 4D-Var inversion at grid box scale ($4^\circ \times 5^\circ$)
 - [40 iterations]
2. **Continental-scale**: BFGS 4D-Var inversion on aggregated regions
 - [6 continental, 3 ocean bands]
3. **SVD-based**: BFGS inversion on optimal subspace
 - [100 moments]

Surface flask and hourly obs

- How do different inversion frameworks resolve the spatial-temporal distribution of N$_2$O emissions?
- What do the results tell us about the global N$_2$O budget and underlying emission processes?
Three inversion frameworks for N_2O

- **Standard inversion**
 - Utilizes existing framework in adjoint
 - More free variables than DOFs
 - $72 \times 46 \times 24 = 79,488$ elements
 - Slow ($100+$ hours)
 - Can be solved analytically
 - Subject to aggregation error
 - Regions determined in an ad hoc way
 - Does not maximize DOFs of inversion

- **Continental-scale inversion**
 - Can be solved analytically
 - Based on information content of inversion
 - Maximizes DOFs, minimizes noise
 - Parallel implementation = fast (~5 hours)

- **SVD-based inversion**
 - (Bousserez and Henze, in revision, QJRMS)
Comparison with HIPPO aircraft data shows reduction of bias in Northern Hemisphere

HIPPO V: 9 Aug – 9 Sept 2011

Kort, Wofsy et al.
Annual global flux well-represented, N$_2$O emissions increased in Tropics, reduced or unchanged at midlatitudes

2011 A priori emissions

2011 Standard emissions

2011 Continental-scale emissions

2011 SVD-based emissions

17.4 Tg N

17.7 Tg N

17.5 Tg N

17.9 Tg N
Annual global flux well-represented, N₂O emissions increased in Tropics, reduced or unchanged at midlatitudes.
Annual global flux well-represented, N\textsubscript{2}O emissions increased in Tropics, reduced or unchanged at midlatitudes.
Annual global flux well-represented, N$_2$O emissions increased in Tropics, reduced or unchanged at midlatitudes

2011 A priori emissions

2011 Standard emissions

2011 SVD-based emissions

Increase in S. America, but observational constraints low
Seasonality of N_2O emissions shifts toward earlier spring peak in Northern Hemisphere

Consistent with the timing of emissions associated with:
- Soil thawing/snow melt
- Fertilizer application
- Leaching and runoff