How well do we understand wintertime emissions of pollutants?
How important are nocturnal & multiphase processes?
What factors control aerosol formation and aerosol/gas partitioning?

→ Viral Shah (talk); Jessica Haskins, Kelsey Larson (posters) on Tuesday
WINTER: Feb 3 - Mar 13 2015

NSF/NCAR C-130 aircraft flight tracks

Measurements

- Gas-phase: NO₂, NO, HNO₃, N₂O₅, ΣPANs, ΣANs, HONO, NOy, CINO₂, HCl, Cl₂, CO, O₃, SO₂, NH₃, CH₂O, alkanes, alkenes, alkynes, CFCs, halons
- Aerosol composition (ToF-AMS, PILS, Filter): organic aerosol, SO₄²⁻, NH₃⁺, NO₃⁻, Cl⁻, Na⁺, Mg²⁺, Ca²⁺
- Aerosol size distribution, actinic flux, meteorological parameters

GEOS-Chem Model

- Nested grid (0.5°x0.625°). v10-01
- Scale EPA NEI 2011 to 2015:
 - 20% reduction in NOx (2015 CEMS + 7%/yr decrease in transportation)
 - 32% reduction in SO₂ (2015 CEMS)

- 50% of flights hours at night
- 71% within 1 km of the surface
Anthropogenic emissions

NOx emissions
- 58% transportation
- 29% stationary FF
- 13% industry

HCHO emissions
- 60% transportation
- 28% stationary FF
- 12% industry

NOy within 10% of observations, but HCHO too low by x2

Impact on oxidants
- 5xHCHO + ClNO2 chemistry
 - 40-80% increase in HOx
 - 10-20% increase in SO4²⁻ & OA

Vertical profiles over land
- NOy observations vs. model
- HCHO observations vs. model 5xNEI

- Increase NEI HCHO emissions by x5 (cold-start OVOC emissions?)
NOy partitioning during WINTER

NOy partitioning (<1km)

Nighttime NOz (NOy-NOx)

- **Model HNO₃ too high x4**
 [Zhang et al., 2012; Heald et al, 2012]

- **Model N₂O₅ too low by x4**
 → Problem with $\gamma(N₂O₅)$?
 GEOS-Chem [Evans & Jacob, 2005]:
 $\gamma(N₂O₅) = f(RH, \text{aerosol}, T) \sim 0.02$
Update $\gamma(N_2O_5)$ to more recent lab obs

$\gamma(N_2O_5)$ – inhibited by nitrate and organics

- SO_4^{2-}-NO_3^--NH_4^+ aerosol $\gamma = f(\text{H}_2\text{O}, \text{NO}_3^-, \text{Cl}^-)$ [Bertram & Thornton, 2009]
- Organic aerosol $\gamma = 0.0001$ (RH<50%), 0.001 (RH>50%) [Badger et al., 2006]

CINO$_2$ yield, ϕ

- SO_4^{2-}-NO_3^--NH_4^+ aerosol $\phi = f(\text{H}_2\text{O}, \text{Cl}^-)$ [Bertram & Thornton, 2009]
- Sea salt $\phi=1$, other aerosol $\phi=0$

New $\gamma(N_2O_5)$

- $\gamma(N_2O_5)<0.01$
- $\gamma(N_2O_5)>0.02$

Feb-Mar surface

New $\phi($CINO$_2$)

- $\phi < 0.2$
- $\phi = 1$
Improved NOy partitioning

\[\text{HNO}_3 + p\text{NO}_3 \]

Observations
- Model, new $\gamma_{N_2O_5}$

Updated model (new $\gamma_{N_2O_5} + \nu_d$)

Nighttime NOz (NOy-NOx) (<1 km)

- **HNO$_3$**
- **HONO**
- **ClNO$_2$**
- **N$_2$O$_5$**
- **ANs**
- **PNs**

\rightarrow New $\gamma(N_2O_5)$ + Update dry deposition

Surface resistance (R_c) ↑ at cold temp $\sim \exp(-T-4)$ [Wesely, 1989]

Set $R_c(\text{HNO}_3)=0$ [Wesely and Hicks, 2000] $\rightarrow \nu_d(\text{HNO}_3) \sim 1-4$ cm s$^{-1}$

Other species: limit R_c increase by x2 $\rightarrow \nu_d(\text{O}_3)$ increases by 40%
Summary

- Oxidative capacity of wintertime polluted air controlled by regional anthropogenic emissions and multiphase chemistry

- Nitrate + OA suppression of $\gamma(N_2O_5) +$ corrected dry dep \rightarrow helps address long-standing winter HNO$_3$/nitrate overestimate problem

GEOS-Chem budget (NE US 0-1 km)

- $\tau_{NO_x} = 1.2$ days
- 75% $N_2O_5 + aero$ (55% $NO_2 + OH$ and 44% $NO_3 + VOC$)
- 10% $NO_3 + VOC$
- 15% CINO$_2$
- 53% NOy exported

- Org nit.