Summary of RS-HDMR sensitivity analyses of modeled ozone and hydrogen oxides for six NASA field campaigns

Kenneth Christian1,, William Brune1, and Jingqiu Mao2

1. Pennsylvania State University, Department of Meteorology and Atmospheric Science, University Park, PA (USA) *kec5366@psu.edu
2. University of Alaska at Fairbanks, Geophysical Institute and Department of Chemistry and Biochemistry, Fairbanks, AK (USA)

Motivation

- Sensitivity and uncertainty analyses are useful to determine certainty in modeled results and attribute sources of error.
- Ozone, OH, and HO\textsubscript{2} are well studied and important
 - Determine lifetimes of VOCs and other trace gas species
 - NASA field campaigns are ideal
 - Many in-situ trace gas measurements for comparison
 - We use a global sensitivity analysis method
 - Simultaneous perturbations of dozens of inputs
 - Nonlinear interactions are taken into account

Methods

- Pre-Screen (Morris Method)
 - Determine ~50 factors
- Create Uncertainty Distributions
- Sample and Perturb
- Sensitivity Analysis

Campaigns studied

- ARCTAS-B (2008)
- ARCTAS-A (2008)
- INTEX-B Houston (2006)
- TRACE-P (2001)
- PEM-Tropics B (1999)

Summary

- General agreement between model and measurements when uncertainties in both are taken into account
- Uncertainties similar between campaigns
 - Ozone: 15-20\% for N. America, 25-30\% for Pacific
 - OH: 25-40\%
 - HO\textsubscript{2}: 20-40\%
- Emissions represent the majority of the uncertainty
 - Lightning NO\textsubscript{x}, isoprene, surface NO\textsubscript{x}, and CO
- Photolysis and kinetics can also be large sources of uncertainty
 - Upwards of 30-40\%
 - Noteworthy because of low uncertainties in rates
 - k_{NO2+OH}, j_{NO2}, j_{O3}
- HO\textsubscript{2} aerosol uptake is the dominant source of HO\textsubscript{2} uncertainty for many regions and of OH uncertainty in some regions
 - Can represent upwards of 50-75\% of total uncertainty
 - Relatively small differences with aerosol uptake producing H\textsubscript{2}O\textsubscript{2} or H\textsubscript{2}O
 - Generally better agreement with lower aerosol uptake rates (currently 0.2)
- A few factors show up repeatedly
 - Local NO\textsubscript{x} sources, lightning NO\textsubscript{x}, isoprene, CO, k_{NO2+OH}, j_{NO2}, j_{O3}, gamma HO\textsubscript{2}

Current and future work

- Finish examining N. American campaigns
- Examine Pacific campaigns
- Examine sensitivities for other outputs
 - Lots of possibilities
 - Ensemble was created for oxidants though
- Work on making model ensemble available for others to examine

Acknowledgments

Research funded by NASA ACCDAM
PSU Grant NNX14AP43G
Thanks to GEOS-Chem support and measurement sources