VOC over North America: Constraints from aircraft campaigns

Xin Chen\(^1\) (chen3849@umn.edu), Dylan B. Millet\(^1\), Hanwant B. Singh\(^2\), Armin Wisthaler\(^3,4\)

\(^1\)University of Minnesota; \(^2\)NASA Ames Research Center; \(^3\)University of Innsbruck; \(^4\)University of Oslo

Emission and deposition of VOC over NA

- **Biogenic Emissions**
 - 42.2 TgC
- **Anthropogenic Emissions**
 - 14.2 TgC
- **Pyrogenic Emissions**
 - 3.4 TgC

- **Dry Deposition**
 - 10.1 TgC
- **Wet Deposition**
 - 6.6 TgC

Vertical OHR characterization at CTR site

Left: Annual and summertime average anthropogenic vs. biogenic contributions to total OHR. Right: Vertical profile of OHR (OH reactivity) in summer from the GEOS-Chem simulation. (CTR: Centreville, AL; the forested SOAS ground site in the SE US)

Model OHR at the surface is mainly due to VOCs (80%). The OVOC contribution to total model OHR increases with altitude (44% to 53% below 850hPa) corresponding to more aged air masses.

Annually, biogenically and anthropogenically-emitted VOC contribute ~80% and 10%, respectively, to the total model OHR. In summer, OHR is dominated by VOC from biogenic sources.

Case studies: VOC transport in convection

Convective transport may help explain the missing source of VOC in upper troposphere.

Acknowledgments

This work is supported by NASA (Grant #NNX14AP89G) and by the University of Minnesota Supercomputing Institute. We thank Joost de Gouw, Carsten Warneke, Paul Wennberg, John Crounse, Joel Thornton, Ben Lee, and Felipe Lopez-Hillfilter for sharing their SENEX, SEAC4RS, DC3 VOC data.