GEOS-Chem simulations of greenhouse gas measurements (CO₂, CH₄, and CO) from moving platforms in and around Australia

Beata Bukosa¹, Nicholas Deutscher¹, Jenny Fisher¹, Clare Murphy¹, Dagmar Kubistin¹,², David Griffith¹
¹University of Wollongong, Wollongong, Australia, ²German Meteorological Service, Hohenpeissenberg, Germany

Abstract

In this study a combination of Fourier Transform InfraRed Spectroscopy (FTIR) measurements with the global Chemical Transport Model (CTM) GEOS-Chem is used to identify and quantify both anthropogenic and natural sources of the two most abundant carbon greenhouse gases (GHGs) CO₂ and CH₄ along with CO in the Australian region.

With the tagged tracer simulations we calculated the contributions of different regions and processes to the total amount of each gas and we identified the sources that drive their variability.

We find that the model can reproduce the spatial variability of the measured carbon GHGs along the Australian coastal regions. However, there are some differences which might be associated with either missing or overestimated sources in the model.

Aim

- To improve our knowledge about GHG sources and sinks in order to reduce the current uncertainties in emission estimates.
- This improvement is crucial because:
 - There are still large uncertainties in processes driving atmospheric composition.
 - CTMs that are used to understand what drives the variability in measured quantities rely on emission estimates - inventories.

Measurements & Model Description

- Ship-borne FTIR measurements¹²
 - CH₄, CO₂, N₂O, O₃, CO and δ¹³C(CO₂)
- Dates: 2012 (Apr - June) -2013 (June -Sept)
- GEOS-Chem model version:
 - CO₂, CH₄ - v10-01
 - CO - v11-01
- Model resolution: 2° × 2.5°

Comparison and Analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>Measurement</th>
<th>Model</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>2012 - High concentrations 27°, 35° and 38°S near urban and industrial areas.</td>
<td>2012 - Additional enhancement along the east coast relative to 2012.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>2012 - The variability is similar to CO₂. High concentrations at 27°, 35° and 38°S.</td>
<td>2013 - Moving north into the tropics the concentration gradually increases, which might be due to transport from the N Hemisphere.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>2012 - Relatively smooth changes in the concentrations except between 35° and 40°S.</td>
<td>2013 - High CO in the northern part of Australia, likely from biomass burning.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Future Directions

1. The presented dataset will be complemented with:
 - Train-borne in-situ FTIR measurements across the N - S Australian continental transect (from Adelaide to Darwin), 8 trips total (2008-2012) – to gain information about the sources/sinks in other parts of Australia.
 - Fixed location in-situ and solar FTIR measurements from TCCON sites in Australia (Wollongong and Darwin) - to distinguish information about the sources on both local and regional scale.
2. A new GEOS-Chem simulation will be created combining CO₂, CH₄, CO in collaborative work with the University of Toronto.

Source Contribution

The figures below describe the variability of the measurements (orange line), model (black line) and different tracers (stacked bars). The measurements were divided into a North (NB) and Southbound (SB) part.

Acknowledgments

- GEOS-Chem Meeting attendance was supported by NCI.
- This work was funded by the Australian Research Council and University of Wollongong.

References