Modeling oxidant chemistry in a high-isoprene atmospheric environment: sensitivity to model resolution and constraints from aircraft observations

Karen Yu, Daniel Jacob, Jenny Fisher, Sungshik Kim, Katherine Travis, Lei Zhu, Robert Yantosca, Melissa Sulprizio, Thomas Ryerson, Armin Wisthaler, Alan Fried, Paul Wennberg, and the SEAC4RS Science Team

7 May 2015
IGC7
Computation expense of tropospheric chemistry simulations requires evaluation of benefits of increasing grid resolution

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Resource requirements (normalized to 4x5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°x5°</td>
<td>1</td>
</tr>
<tr>
<td>2°x2.5°</td>
<td>8</td>
</tr>
<tr>
<td>0.25°x0.3125°</td>
<td>1536</td>
</tr>
</tbody>
</table>
Computation expense of tropospheric chemistry simulations requires evaluation of benefits of increasing grid resolution.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Resource requirements (normalized to 4x5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°x5°</td>
<td>1</td>
</tr>
<tr>
<td>2°x2.5°</td>
<td>8</td>
</tr>
<tr>
<td>0.25°x0.3125°</td>
<td>1536</td>
</tr>
</tbody>
</table>

- Effect of grid resolution on NO\textsubscript{X}-saturated vs. NO\textsubscript{X}-limited regime has been extensively studied.
Computation expense of tropospheric chemistry simulations requires evaluation of benefits of increasing grid resolution

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Resource requirements (normalized to 4x5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°x5°</td>
<td>1</td>
</tr>
<tr>
<td>2°x2.5°</td>
<td>8</td>
</tr>
<tr>
<td>0.25°x0.3125°</td>
<td>1536</td>
</tr>
</tbody>
</table>

- Effect of grid resolution on NO$_x$-saturated vs. NO$_x$-limited regime has been extensively studied.
- As NO$_x$ emissions decline, it becomes increasingly important to evaluate model ability to represent interaction of biogenic and anthropogenic emissions.

How does grid resolution affect model representation of high-NO$_x$ vs. low-NO$_x$ regimes?
Evaluate GEOS-Chem run at $4^\circ \times 5^\circ$, $2^\circ \times 2.5^\circ$ and $0.25^\circ \times 0.3125^\circ$ resolutions against SEAC4RS observations

GEOS meteorology at $0.25x0.3125$ resolution

- 4x5 global, starting January 2013
- 2x2.5 global, start January 2013
- 0.25x0.3125 N. America with 4x5 boundary conditions, start run August 2013
Evaluate GEOS-Chem run at 4°x5°, 2°x2.5° and 0.25°x0.3125° resolutions against SEAC4RS observations

GEOS meteorology at 0.25x0.3125 resolution

4x5 global, starting January 2013
2x2.5 global, start January 2013
0.25x0.3125 N. America with 4x5 boundary conditions, start run August 2013

Observations from SEAC4RS aircraft campaign

<table>
<thead>
<tr>
<th>Instrument (PI)</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSD CL (T. Ryerson)</td>
<td>Ozone</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>NO₂</td>
</tr>
<tr>
<td>PTRMS (A. Wisthaler)</td>
<td>Isoprene</td>
</tr>
<tr>
<td>CAMS (A. Fried)</td>
<td>Formaldehyde</td>
</tr>
</tbody>
</table>

Boundary layer comparisons
Emissions of NO\textsubscript{X} and isoprene in Southeast US show high granularity and spatial anti-correlation

Figure 1. Emissions of anthropogenic NO\textsubscript{X}, soil + fertilizer NO\textsubscript{X}, lightning NO\textsubscript{X}, and isoprene at each resolution for August 2013. Anthropogenic NO\textsubscript{X} emissions are from the NEI2008 inventory. Soil and fertilizer NO\textsubscript{X} are computed using the parameterization of Hudman et al. [2012]. Lightning NO\textsubscript{X} computed based on satellite data as in Murray et al. [2012]. Isoprene emissions from MEGAN [Guenther et al., 2012].
Emissions of NO$_x$ and isoprene in Southeast US show high granularity and spatial anti-correlation

NOx emissions at 0.25x0.3125

Isoprene (0.25x0.3125)

0.25x0.3125

$r = -0.15$

2x2.5

$r = 0.10$

4x5

$r = 0.76$
Probability distributions for primary and secondary species

- Effect of grid resolution more apparent for highly skewed distributions: resolution of small-scale features allows for more extreme tail values
- Resolution differences for secondary species related to differences in chemical pathways
AQS surface measurements provide additional information on air quality in the Southeast US

- Increasing grid resolution improves representation of high tail compared against AQS measurements
- AQS measurements in the high tail are primarily urban, unlike in the SEAC⁴RS data.
Global models are unable to distinguish high NO$_x$ from high isoprene environments, resulting in a higher fraction of peroxy radicals reacting via high-NO$_x$ pathway.
Effect of grid resolution on regional mean concentrations is small

NOx lifetime (wrt conversion to HNO\textsubscript{3})

- 4x5
- 2x2.5

Mean ozone biases

- 4x5
- 2x2.5
- 0.25x0.3125

Mean PAN mixing ratio

- DC8
- 4x5
- 2x2.5
- 0.25x0.3125

- ppt
- 0 100 200 300

Days

- 0.0
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6