Factors controlling the oxidative capacity of the troposphere since the Last Glacial Maximum

Lee T. Murray (ltmurray@post.harvard.edu)\(^1\), Loretta J. Mickley\(^1\), Jed O. Kaplan\(^2\), Eric D. Sofen\(^3\), Mirjam Pfeiffer\(^2\), and Becky Alexander\(^3\)

1. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
2. Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
3. Department of Atmospheric Sciences, University of Washington, WA, USA
GEOS-Chem at and since the Last Glacial Maximum

GOAL: Test sensitivity of OH to range of uncertainty in climate and emissions over glacial-interglacial periods

ICE age Chemistry And Proxies (ICECAP) project

Climate
- GISS ModelE GCM (Schmidt et al., 2006)

Stratospheric chemistry
- Linoz (McLinden et al., 2000)

Tropospheric chemistry
- GEOS-Chem CTM (v9-01-03) (http://www.geos-chem.org)

Vegetation
- BIOME4-TG (Kaplan et al., 2006)

Fire
- LMfire (Pfeiffer and Kaplan, 2012)

Isotope chemistry
- GEOS-Chem Δ^{17}O offline aerosol CTM (Sofen et al., 2011)

4 climate scenarios
- Present Day (ca. 1990s)
- Preindustrial (ca. 1770s)
- "Warm" LGM (~21ka)
- "Cold" LGM (~21ka)

3 past emission scenarios
- Low Fire
- High Fire
- Fixed Lightning

Uncertainty in ∆SST @ LGM

Fire CO Emissions
- LMfire [Pfeiffer et al., in prep.]
- Scaled to Charcoal Data [Power et al., 2008]

Uncertainty in past lightning

- Lightning NOx

Lightning Scenario
- Fixed
- Variable
Net reduced OH burdens in all past atmospheres

OH relatively buffered; our present day consistent with large spread in models

We find **decreased** OH at LGM

Most earlier studies found **increases** necessary to match ice-core methane decreases

What controls OH in our simulations? Why are we different? Methane budget implications?
OH sensitive to photolysis, water vapor, emissions

We find a simple linear relationship explains 67% of variability in simulated mean OH across glacial-interglacial periods.

\[
[\text{OH}] \propto J_{O_3} q \frac{S_N}{S_C^{3/2}}
\]

Derived from steady-state equations of the \(O_3\)-CO-HO\(_x\)-NO\(_x\) system following Wang and Jacob [1998], who were able to consider \(J_{O_3}\) and \(q\) as constant.

OH most correlated with \(J_{O_3}\), then \(q\), then \(S_N/(S_C^{3/2})\)
In colder climates:
- Stratospheric circulation decelerates
- Less stratospheric NO\textsubscript{x} & ClO\textsubscript{x}
- Lower tropopause

More tropical overhead ozone (converse in warmer climates)

Earlier studies used present-day stratospheric boundary conditions
Tropospheric H$_2$O changes with surface temperature

Surface and atmospheric temperature decreases drive large decreases in water vapor at LGM relative to preindustrial; small increases in present day.
OH sensitivity to changing emissions

\[J_{O_3} q \frac{S_N}{S_C^{3/2}} \]

Simulated mean OH
not sensitive to
- Fires
- Fuel combustion

but sensitive to
- Lightning

Fuel, fire, and biogenics all have correlated changes in \(S_N \) and \(S_C \)

\(R^2 = 1.00 \)
\(R^2 = 0.98 \)
\(R^2 = 0.92 \)
\(R^2 = 0.40 \)

Lightning makes a large percentage of \(S_N \), and \(S_N \ll S_C \); ratio easily perturbed by lightning

Earlier studies did not vary \(S_N \) overhead ozone, favoring \(\Delta S_C \).
Implications for methane budget

Methane varies by ± 50%

- **Temp.**
- **CO₂**
- **CH₄**

![Graph showing temperature, CO₂, and CH₄ concentrations](image)

[Sowers and Bender, 1995]

What drives glacial-interglacial variability in methane?

Wetland emissions?
- Khalil and Rasmussen [1987]
- Crutzen and Brühl [1993]
- Chappellaz et al. [1993, 1997]
- Martinerie et al. [1995]
- Brook et al. [2000]
- Fischer et al. [2008]
- Singarayer et al. [2011]
- Levine et al. [2011a, 2011b]

OH sink?
- Kaplan [2002]
- Valdes et al. [2005]
- Kaplan et al. [2006]

<table>
<thead>
<tr>
<th>Decrease in LGM methane emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murray et al. [2013]</td>
</tr>
<tr>
<td>Weber et al. [2010]</td>
</tr>
<tr>
<td>Kaplan et al. [2006]</td>
</tr>
<tr>
<td>Valdes et al. [2005]</td>
</tr>
</tbody>
</table>

(Implied from ΔLCH₄)

Our static/increased methane lifetimes at LGM consistent with a higher role for wetland emissions

Implied source changes from LCH₄ consistent with previous bottom-up LGM emission estimates

Global methane lifetime against oxidation by tropospheric OH

\[\tau_{\text{CH}_4, \text{OH}} = \frac{\int_{\text{surface}}^\text{TOA} [\text{CH}_4] dM}{\int_{\text{surface}} k_{\text{CH}_4 + \text{OH}}(T) [\text{OH}][\text{CH}_4] dM} \]

- Can’t treat CH₄ distribution constant on glacial timescales; \(k_{\text{CH}_4 + \text{OH}} \) is not enough alone

Decreases in integrated methane loss rate from [OH]↓ and T↓ attenuated by increases in tropical fraction of methane burden at LGM

![Graph showing methane concentrations](image)

Kaplan et al. [2006]

- Preind
- LGM

We prescribe methane from ice cores; 33% higher fraction in tropics at LGM. Supported by methane emission models.
Chemical feedbacks on glacial cycles?

Next step: Put aerosols back into GCM and re-run to calculate radiative forcing (RF).

Large decrease in organic aerosol at LGM leads to regional warming, providing a negative feedback; comparable in magnitude to present-day inorganic RF.