Deriving top-down NO$_x$ and SO$_2$ emissions simultaneously using OMI observations and GEOS-Chem adjoint

Zhen Qu1,*, Daven K. Henze1, Jun Wang2, Xiaoguang Xu2, Yi Wang2, Wei Wang3, Can Li4, Nicolas Theys5

*zhen.qu@colorado.edu
May 22nd, 2018, GEOS-Chem Asia Meeting (GCA1)

1University of Colorado Boulder, 2University of Iowa, 3China National Environmental Monitoring Center, 4University of Maryland, 5Royal Belgian Institute for Space Aeronomy
Satellite observations provide timely update of pollutant emissions and concentrations

\(\text{NO}_2 \) column density for US

(Jiang et al., 2018; Qu et al., 2017; Miyazaki et al., 2017; Ding et al., 2017; Krotkov et al., 2016; de Foy et al., 2016; Liu et al., 2016; Duncan et al., 2016; Cui et al., 2016)

- OMI shows unexpected slow down of \(\text{NO}_2 \) concentration in US
Satellite observations provide timely update of pollutant emissions and concentrations

(NO₂ column density for US) (Top-down SO₂ emissions for China)

(Jiang et al., 2018; Qu et al., 2017; Miyazaki et al., 2017; Ding et al., 2017; Krotkov et al., 2016; de Foy et al., 2016; Liu et al., 2016; Duncan et al., 2016; Cui et al., 2016)

- OMI shows unexpected slow down of NO₂ concentration in US
- SO₂ emissions starts to decrease from 2007 in China.

(Koukouli et al., 2017; Li et al., 2017; Krotkov et al., 2016; Wang et al., 2016)
Satellite observations provide timely update of pollutant emissions and concentrations

NO₂ column density for US

Top-down SO₂ emissions for China

(Jiang et al., 2018; Qu et al., 2017; Miyazaki et al., 2017; Ding et al., 2017; Krotkov et al., 2016; de Foy et al., 2016; Liu et al., 2016; Duncan et al., 2016; Cui et al., 2016)

(Koukouli et al., 2017; Li et al., 2017; Krotkov et al., 2016; Wang et al., 2016)

- OMI shows unexpected slow down of NO₂ concentration in US
- SO₂ emissions starts to decrease from 2007 in China.
- Uncertainties: overlooked chemical interactions & retrieval method
Improved performance in emission estimates using multi-species observation and optimization

- Better performance of joint 4D-Var (by 8.7%) and mass balance (by 5.1%) than single species inversion

Pseudo observation test

Legend
- **VarJ**: 4D-Var jointly
- **VarS**: Sum of two individual 4D-Var
- **MBJ**: Mass balance jointly
- **MBS**: Sum of two individual mass balance
- **OptS**: Optimize SO$_2$ emissions
- **OptN**: Optimize NO$_x$ emissions
- **ObsS**: Observe SO$_2$ column
- **ObsN**: Observe NO$_2$ column
Improved performance in emission estimates using multi-species observation and optimization

- Better performance of joint 4D-Var (by 8.7%) and mass balance (by 5.1%) than single species inversion
Improved performance in emission estimates using multi-species observation and optimization

- Better performance of joint 4D-Var (by 8.7%) and mass balance (by 5.1%) than single species inversion
- Largest decrease of NMSE if observe and optimize both species at the same time
Generally reduced error and bias in hybrid joint posterior NO$_x$

Setup (2005-2012):

- **True emissions**: 10% annual growth rate
- **Prior emissions**: 2010 true emissions x random noises x 0.5, for all years
Generally reduced error and bias in hybrid joint posterior NO_x

Setup (2005-2012):

- **True emissions**: 10% annual growth rate
- **Prior emissions**: 2010 true emissions \times random noises \times 0.5, for all years

- Hybrid approach reduce error (bias) by 17-53% (17-83%) compared to MB for NO_x, except for 2006
Generally reduced error and bias in hybrid joint posterior NO\textsubscript{x}

Setup (2005-2012):
- **True emissions**: 10% annual growth rate
- **Prior emissions**: 2010 true emissions x random noises x 0.5, for all years

- Hybrid approach reduce error (bias) by 17-53% (17-83%) compared to MB for NO\textsubscript{x}, except for 2006
- Joint inversion reduce error (bias) by 0-12% (3-13%) compared to single species inversion for NO\textsubscript{x}
Generally reduced error and bias in hybrid joint posterior SO$_2$

Setup (2005-2012):
- **True emissions:** 10% annual growth rate
- **Prior emissions:** 2010 true emissions x random noises x 0.5, for all years

Hybrid approach reduce error (bias) by 50-74% (23-96%) compared to MB for SO$_2$

Joint inversion reduce error (bias) by by 3-18% (7-13%) compared to single species inversion for SO$_2$, except for 2005
Different magnitude and changing directions of NO$_2$ and SO$_2$ SCD from different retrieval products

- NO$_2$ NASA standard product is 50% smaller than DOMINO retrievals in densely populated and industrial regions.
- Posterior NO$_x$ emissions are more robust in Yangtze River Delta, Xinjiang, Ningxia, and Inner Mongolia.

(Qu et al., JGR, 2017)
Different magnitude and changing directions of NO$_2$ and SO$_2$ SCD from different retrieval products

- NO$_2$ NASA standard product is 50% smaller than DOMINO retrievals in densely populated and industrial regions.
- Posterior NO$_x$ emissions are more robust in Yangtze River Delta, Xinjiang, Ningxia, and Inner Mongolia.

(Qu et al., JGR, 2017)

SO$_2$ SCD, GC – OMI, Jan 2010

- Consistent underestimate of volcanic SO$_2$ due to missing sources
- Inconsistent magnitude and signs of model-observation differences in mid latitude in NH, possibly caused by different cloud product and surface reflectivity
Discrepancies in different retrieval products can propagate into top-down emissions

Emissions in China

- Posterior NO\textsubscript{x} emissions from NASA SP is smaller than that from DOMINO by 39-46%
Discrepancies in different retrieval products can propagate into top-down emissions

- Posterior NO$_x$ emissions from NASA SP is smaller than that from DOMINO by 39-46%
- China’s posterior SO$_2$ emission from NASA SP is 17-46% smaller than top-down estimates from BIRA product.
Evaluation with in-situ measurement show better consistency of posterior concentration in China but worse in US

Surface SO$_2$ concentration in China (Jan 2010) [ug/m3]
Evaluation with in-situ measurement show better consistency of posterior concentration in China but worse in US

Surface SO_2 concentration in China (Jan 2010) [ug/m3]

- Posterior surface SO_2 concentration constrained by BIRA product reduce bias and improve correlation while SP posterior degrade the performance in China.
Evaluation with in-situ measurement show better consistency of posterior concentration in China but worse in US

Surface SO$_2$ concentration in US [ppbv]

- Posterior surface SO$_2$ concentration in US has worse correlation
- SP posterior has reduced bias compared to AQS measurements
Summary

• Reduced posterior emission error when assimilating NO₂ and SO₂ to optimize NOₓ and SO₂ emissions simultaneously

• Different NO₂ and SO₂ retrievals lead to ~ 50% discrepancies in posterior emissions

• Differences in SO₂ retrievals are possibly related to different cloud product and meteorology

• Improved consistency in posterior simulation of SO₂ concentration with surface measurements in China, but no obvious improvements in US
OMI SO2 SCD from different products, Jan 2010