An online model for air-sea exchange of mercury: insights for the influence of atmospheric deposition on ocean concentrations

Yanxu Zhang

School of Atmospheric Sciences,
Nanjing University

05/22/2018 NUIST
Mercury as an element

The only metal that is liquid at standard state, vapor as a noble gas in air.
Mercury as a Neurotoxin

Minamata Convention on mercury

- Requires best available technology for coal-fired power plants
- Mercury mining to be banned in 15 years
- Regulation of mercury use in artisanal gold mining

A Key challenge: quantify land/ocean re-emissions
Importance of air-sea exchange in global mercury cycle

Biggest reservoir for Hg

Holmes et al., 2010

Key questions so far:
1. Lack of observations
2. Flux highly uncertain
3. Driving factors/seasonal cycle unclear
Impact factors for air-sea exchange of mercury

Soerensen et al., 2014
A brief history of air-sea exchange models

- 2-box model
- 3-box model
- 14-box model
- 3d offline model
- 2d slab model
Develop an online air-sea exchange model for mercury
Interpret cruise observations
Explore driving factors for air-sea exchange
Models

V9-02 (Horowitz et al, 2017)
4x5 resolution, 47 layer
GEOS5 (2008-2013)
Hourly time step

V1.27 (Zhang et al, in prep)
1x1 resolution, 50 layer
Hourly time step

Hg\text{II} deposition flux,
Atmospheric Hg\text{0} concentration

Net Hg\text{0} evasion flux

Regrider

MITgcm
Results

- Air-sea exchange is highly episodic, influenced by cyclone
- Resolution dependent: 1x1 is ~10% than 4x5 model

01-Jan-2014, Hg0 Evasion, kg m\(^{-2}\) s\(^{-1}\)
Comparison with observations: tropical ocean

Sorensen et al. 2014

Hg0 air, ng/m3

Hg0 aq, pM

Observation
Offline model
Online model
Comparison with observations: tropical ocean

Wang and Xie et al. in prep
Comparison with observations: Southern Ocean

Dec, 2014 – Jan, 2015

Wang et al. 2017
Hg0aq vs instantaneous precipitation

Precipitation over May 4, 2009 18:00 2°S (peak time)

Hg0aq data well correlated with instantaneous 6-hour precipitation data
Deposition as wet or dry

Model underestimates high concentration peaks but overestimates lower concentration regions:

HgII wet deposition
- Convective rain scavenging
 - Bias low tropical Pacific & Atlantic
 - Bias high or okay at Middle and high latitudes

HgII dry deposition
- Loss via sea salt & gas/particle partitioning
 - Double counting
 - Rate-limited & instant equilibrium
Acknowledgements

Jiancheng Wang and Zhouqing Xie from USTC
Anne Soerensen from Stockholm University
Joachim Kuss from Leibniz Institute for Baltic Sea

Funding support from Nanjing University

谢谢！
Nonlinearity in piston velocity calculation

4x5 resolution

0.7x0.7 resolution
Air-sea exchange of mercury

- Multiple pathways: gas exchange, bubbles, spray
- Gas exchange: controlled by concentration gradient
- Piston velocity: influenced by wind speed, wave, etc. \(\alpha U^2 \)

Mathematical model:

\[
F = k_w(C_{air} - C_{water}/H)
\]

- \(F \): Exchange flux
- \(k_w \): Piston velocity
- \(C \): [Hg\(^0\)]
- \(H \): Henry’s Law constant
Correlation between rain and HgOaq

\[y = 38.29x + 0.0375 \]

\[R^2 = 0.5209 \]
Scale deposition flux (4x5) by instantaneous rain (1x1) data?