Global methane budget and trends in 2010-2017: complementarity of inverse analyses using in situ and satellite observations

Xiao Lu
Daniel Jacob, Yuzhong Zhang, Joannes Maasakkers, Lu Shen, Zhen Qu, Jianxiong Sheng, Melissa Sulprizio, Tia Scarpelli, Robert Yantosca, Hannah Nesser, Harvard University

and collaborators from NOAA, JPL, and U. of Leicester

GEOS-Chem Europe User’s Meeting
1 Sep, 2020
Ongoing efforts to understand global methane budget and trends

Sources
~550 ± 60 Tg a⁻¹

Sinks
OH, soil uptake …

\[\text{Lifetime} \ 9.1 \pm 0.9 \ \text{years} \]

\[\text{Tropospheric OH: 89\%} \]

\[\frac{\text{d} \ m_{\text{CH}_4}}{\text{d} \ t} = \sum_i E_i - \frac{m_{\text{CH}_4}}{\tau} \]

CH₄ mole fraction (ppb)

GLOBAL MONTHLY MEAN CH₄

9.0 ppbv a⁻¹

5.7 ppbv a⁻¹

[NOAA/ESRL]
Comparing suborbital and satellite observations in inversion

In situ (suborbital) methane from ObsPack, 2010-2017
(surface, tower, shipboard, aircraft)

GOSAT measurements of, 2010-2017
atmospheric methane column

Pro: accurate, sensitive to surface flux
Con: spatial sparsity

Pro: massive, global coverage
Con: errors associated with retrieval

Are ObsPack (in situ) and GOSAT (satellite) observations consistent and complementary/redundant in inversion?
Method: analytical inversion of ObsPack and GOSAT observations

Chemical transport model (forward model)
\[y = F(x) = Kx \]

Observation (y) State vectors (x)

(Chemical transport model)

\[\nabla x \ln (P(x|y)) = 0 \]

Analytical inverse modeling

Prior estimates: GFEI for fuel emission; EDGAR v4.3.2 for global others; GEPA; WetCHARTs for wetland; No trends in 2010-2017.

Analytical inversion: Yielding closed-form posterior error \(\hat{S} \) and averaging kernel sensitivity \(A \)

Conduct ObsPack-only, GOSAT-only, and GOSAT+ObsPack inversions

State vectors (x)

- mean non-wetland emissions on 4°x5° grid for 2010-2017
- trends of emissions for 2010-2017, gridded
- Monthly wetland emissions in 14 subcontinental regions
- Annual hemispheric OH concentrations
Weighting in situ and satellite observations in inversion

Cost function

\[J(x) = (x - x_A)^T S_A^{-1} (x - x_A) + \gamma (y - F(x))^T S_o^{-1} (y - F(x)) \]

\[J_A \quad J_O \]

Ideally,

\[J_A \sim n \text{ (number of state vector)} \]
\[J_O \sim m \text{ (number of observation)} \]

\(\gamma = 1 \) (no regularization) for ObsPack in situ observations
\(\gamma = 0.1 \) for GOSAT satellite observations
Using either ObsPack or GOSAT is enough to constrain background methane and global methane budget imbalance (as it can fit observed trend).

GOSAT could not fit ObsPack surface / tower observations that are sensitive to source.
Ability of ObsPack vs. GOSAT to constrain anthropogenic emission

Averaging kernel sensitivities for non-wetland (anthropogenic) emissions on 1009 grid.

$$A = \frac{\partial \hat{x}}{\partial x} = I_n - \hat{S}S_A^{-1}$$

- **DOFS**: Degree of freedom for signal, trace of (A), =1009 if fully constrained

- Globally, GOSAT provides more information than ObsPack. (DOFS=212 vs DOFS=113)
- ObsPack can add 50 (from 212 to 262) independent pieces of information (DOFS) to GOSAT (complementarity).
- GOSAT provides strong constraints in the tropics, ObsPack is valuable in northern middle and high latitudes (US, Canada, Europe, China).
Posterior correction to prior anthropogenic emissions

Prior US emissions are too low, from oil/gas.

Prior Chinese emissions are too high, from coal.

Prior Canadian emissions are too low, from oil/gas.

*Prior oil, gas, and coal emissions match the UN report.

[Scarpelli et al., 2020]
Anthropogenic emission trends in 2010-2017

Averaging kernel sensitivities

Estimated trend $[\text{a}^{-1}]$

- The joint inversion shows methane emission increases in the US ($\sim 0.4 \text{ Tg a}^{-2}$) and China ($\sim 0.1 \text{ Tg a}^{-2}$). Europe and Canada shows no trends.

- Global non-wetland emissions increases by $1.7\pm0.6 \text{ Tg a}^{-2}$, information is mostly from GOSAT.
Global methane budget in 2010-2017

<table>
<thead>
<tr>
<th></th>
<th>Prior</th>
<th>ObsPack</th>
<th>GOSAT</th>
<th>GOSAT+ObsPack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sources [Tg a⁻¹]</td>
<td>533</td>
<td>515</td>
<td>504</td>
<td>551</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>344</td>
<td>359</td>
<td>333</td>
<td>371</td>
</tr>
<tr>
<td>Wetland emission</td>
<td>161</td>
<td>126</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Fire emissions</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Seep, termites</td>
<td>14</td>
<td>15</td>
<td>140</td>
<td>148</td>
</tr>
<tr>
<td>Total sinks [Tg a⁻¹]</td>
<td>540</td>
<td>494</td>
<td>478</td>
<td>528</td>
</tr>
<tr>
<td>OH oxidation</td>
<td>468</td>
<td>421</td>
<td>406</td>
<td>455</td>
</tr>
<tr>
<td>Other loss</td>
<td>73</td>
<td>73</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>Mean imbalance [Tg a⁻¹]</td>
<td>-7</td>
<td>21</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Methane chemical lifetime [a]</td>
<td>10.6</td>
<td>11.9</td>
<td>12.5</td>
<td>11.2</td>
</tr>
<tr>
<td>r (methane emissions vs lifetime)</td>
<td>/</td>
<td>-0.53</td>
<td>-0.72</td>
<td>-0.68</td>
</tr>
</tbody>
</table>

Equivalent to mean methane growth of 7.7~8.8 ppbv a⁻¹, compared to 7.2 ppb a⁻¹ in observation

Global Carbon Project: 538~593 Tg a⁻¹ in 2008-2017, 360 Tg a⁻¹ are anthropogenic sources.

- All inversions reproduce the mean methane budget imbalance.
- GOSAT+ObsPack provides the most consistent budget with literatures.
Take home messages

• GOSAT and ObsPack are complementary in the inversion. GOSAT information dominates the tropics, ObsPack is more important for northern mid-latitudes. ObsPack also helps to lower the error correlation between methane emissions and loss.

• GOSAT+ObsPack joint inversion finds:
 ➢ underestimation of oil/gas emissions in US and Canada
 ➢ overestimation of emissions in China (coal)
 ➢ wetland emissions in North America are over estimated
 ➢ oil/gas emissions are increasing in US
 ➢ global methane emissions and loss are 551 and 528 Tg a\(^{-1}\) in 2010-2017