Inconsistency of ammonium-sulfate aerosol ratios with thermodynamic models in the eastern US: a possible role of organic aerosol

Rachel Silvern
8th International GEOS-Chem Meeting
May 2, 2017

with Daniel Jacob¹, Patrick Kim¹, Eloise Marais¹,², Jay Turner³, Jose Jimenez⁴, and Pedro Campuzano-Jost⁴

¹Harvard University | ²Now at University of Birmingham | ³Washington University, St. Louis | ⁴University of Colorado Boulder

Atmospheric Chemistry and Physics, doi: 10.5194/acp-17-5701-2017, 2017

Great Smoky Mountains National Park, Southeast US
Sulfate aerosol forms from emissions of SO_2 and ammonia following thermodynamics

Coal combustion

- SO_2 → NH_3 → SO_4^{2-}

Fertilizer & livestock

- NH_3 → NO_x → HNO_3 → NH_4^+

Combustion

- NH_4^+ → HNO_3 → NH_3 → SO_4^{2-}

Ammonium-sulfate aerosol ratio

$$\frac{[\text{NH}_4^+]}{[\text{S(VI)}]}, \text{ mol mol}^{-1}$$

Graph

- $\text{NH}_3(g)$, $\mu g \text{ m}^{-3}$
- Aerosol pH
- $\text{Ammonium-sulfate aerosol ratio}$

- Thermodynamic models predict the ammonium-sulfate aerosol ratio approaches 2 mol mol$^{-1}$ when ammonia is in excess.
Surface observations in the eastern US summer show that excess ammonia is available.

Emission Ratio
\(\frac{\text{NH}_3}{\text{SO}_2} \)

Wet Deposition Ammonium-sulfate Ratio
\(\frac{[\text{NH}_4^+]}{[\text{S(VI)}]} \)

Aerosol Ammonium-sulfate Ratio
\(\frac{[\text{NH}_4^+]}{[\text{S(VI)}]} \)

Data: EPA NEI & MASAGE

Data: NADP

Excess ammonia

Low observed ammonium-sulfate aerosol ratios despite the presence of excess ammonia
Long-term trends in observations show further departure from thermodynamic predictions

Averages for Southeast US summer 2003-2013

Wet Deposition Fluxes (kg ha\(^{-1}\))

CSN Aerosol Concentrations (\(\mu g m^{-3}\))

Sulfate

-6.1% a\(^{-1}\)

-8.0% a\(^{-1}\)

no trend

-8.5% a\(^{-1}\)

Ammonium

[\(NH_4^+\)/[S(VI)] (mol mol\(^{-1}\))]

+5.8% a\(^{-1}\)

-3.0% a\(^{-1}\)

Year

Ammonium-sulfate aerosol ratio decreasing despite increasing relative supply of ammonia
Uptake of ammonia by sulfate aerosol may be affected by mixing with organic aerosol (OA)

OA increasing relative to sulfate

SEARCH OA/S(VI) Aerosol Ratio (g g\(^{-1}\))

Phase separation observed in laboratory and field

You et al., 2012

Laboratory evidence for delayed uptake of ammonia due to OA

\[\gamma = 5 \times 10^{-4} \]

Liggio et al., 2011

Implement kinetic limitation for uptake of ammonia

\[
\frac{d[NH_4^+]}{dt} = k([NH_3(g)] - [NH_3(g)]_{eq})
\]

\(\gamma\) from Liggio et al., 2011
Kinetic limitation improves agreement of modeled and observed ammonium-sulfate ratios

Kinetic limitation improves agreement of modeled and observed ammonium-sulfate ratios and reproduces observed ammonia without significant bias in the Southeast US.
Conclusions and implications

• Observations show low ammonium-sulfate aerosol ratios despite excess ammonia, at odds with thermodynamic models

• Despite declining SO\textsubscript{2} emissions and constant ammonia emissions, the ammonium-sulfate aerosol ratio decreased from 2003-2013

• Southeast US aerosol has transformed from being sulfate-dominated to OA-dominated over the same time period

• Implementation of a simple kinetic mass transfer limitation for ammonia uptake to sulfate aerosol better reproduces observed ammonium-sulfate aerosol ratios and ammonia

• The co-benefit of SO\textsubscript{2} emission reductions for suppressing secondary organic aerosol formation may not be as large as previously thought if aerosol acidity is increasing

• A mass transfer limitation may also have implications for the partitioning of semi-volatile species such as nitrate as well as water