Simple chemistry gone wrong: uncertainty in NO-NO₂ cycling in the upper troposphere and the implications for air quality

Rachel Silvern¹
16th Annual CMAS Conference
October 23, 2017

with Daniel Jacob¹, Katie Travis², Tomas Sherwen³, Mat Evans³, Ron Cohen⁴, Josh Laughner⁴, Samuel Hall⁵, Kirk Ullmann⁵, John Crounse⁶, Paul Wennberg⁶, Jeff Peischl⁷, Tom Ryerson⁷, and Ilana Pollack⁸

¹Harvard University | ²MIT | ³University of York | ⁴UC Berkeley | ⁵NCAR | ⁶Caltech | ⁷NOAA | ⁸Colorado State University
SEAC4RS aircraft campaign during August-September 2013 provided detailed observations of O$_3$-NO$_x$-VOC chemistry.

Extensive observations over the Southeast US during summer 2013

GEOS-Chem near real time simulation during SEAC4RS at 0.25°×0.3125° resolution with observations overlaid.
Observations show elevated NO\textsubscript{x} concentrations in the upper troposphere mostly present as NO. Median daytime vertical profiles during SEAC4RS:

- NO\textsubscript{x} measurements: T. Ryerson
- NO\textsubscript{2} measurements: R. Cohen
- O\textsubscript{3} measurements: T. Ryerson
- \(J_{NO2}\) measurements: S. Hall

GEOS-Chem overestimates the NO/NO\textsubscript{2} ratio by over a factor of 2 in the upper troposphere.
Conversion of NO to NO\textsubscript{2} balances only half of NO\textsubscript{2} photolysis.

NO-NO\textsubscript{2} cycling in the upper troposphere during SEAC4RS

\[[O_3], J_{NO_2} \text{ from observations, radical concentrations from GEOS-Chem along the flight tracks} \]

\[\text{Rate (10}^6 \text{ molecules cm}^{-3} \text{ s}^{-1}) \]

\[\text{NO} \rightarrow \text{NO}_2 \]

\[\text{NO}_2 \rightarrow \text{NO} \]
Underestimate of NO/NO₂ ratio cannot be explained by errors in GEOS-Chem radical concentrations.

Underestimate in peroxy and BrO radicals would have to be factor of 5 and 21 to close NO-NO₂ budget.
Uncertainties in NO$_2$ photolysis and the NO+O$_3$ reaction rate are major sources of errors in tropospheric chemistry models.

NO$_2$ spectroscopic data have 20% uncertainty

NO$_2$ photolysis frequency:

$$J_{NO_2} = \int F(\lambda)\sigma(\lambda)\phi(\lambda)\,d\lambda$$

- F = actinic flux
- σ = absorption cross section
- ϕ = quantum yield

$\pm 20\%$ at all temperatures (JPL compilation)

NO+O$_3$ reaction rate may be biased low at cold temperatures

NO+O$_3$ Arrhenius rate constant:

$$k = A \exp\left[-\frac{E}{RT}\right]$$

- A = pre-exponential factor
- E = activation energy
- R = ideal gas constant
- T = temperature

Atkinson et al. (2004)
Increasing NO+O₃ reaction rate combined with decreasing J_{NO2} closes NO-NO₂ budget.

Decreasing activation energy of NO+O₃ rate (k_1) at low temperatures.

Decreasing J_{NO2} to 1σ uncertainty would affect model and measurements.

Observed
Standard Model
J_{NO2} -20%, 1.4k_1
J_{NO2} -20%, 1.9k_1
Correction of the NO/NO$_2$ ratio results in large decreases in O$_3$ throughout the troposphere in the Southeast US

- Surface ozone decreases by 5 ppb due to reduction in J_{NO2}, improving agreement with observations
- Free troposphere O$_3$ underestimate may be due to insufficient transport from the stratosphere
- Globally, annual mean tropospheric OH decreases by 20%
Satellite measurements of NO$_2$ are particularly sensitive to abundance in the upper troposphere.

OMI observes backscattered solar radiation.

NO$_2$ tropospheric column density observed from NASA.

Travis et al. (2016)
Model underestimates of upper tropospheric NO$_2$ cause positive bias in tropospheric NO$_2$ column retrievals from satellites.

- NO$_2$ columns are 14-23% lower than previously thought;
- The upper troposphere contributes 46% to total column;
- Implies that NO$_x$ emissions are 30-50% lower than NEI.
Conclusions and implications

• An observationally constrained analysis of the NO/NO\textsubscript{2} ratio in the upper troposphere in the Southeast US suggests underestimates in conversion of NO to NO\textsubscript{2} may be due to biases in low-temperature kinetic (NO+O\textsubscript{3}) and spectroscopic (J_{NO2}) laboratory data.

• The simulation of surface ozone is improved through decreased NO\textsubscript{2} photolysis but may require increased transport from the stratosphere to correct ozone in the upper troposphere.

• Tropospheric NO\textsubscript{2} columns inferred from satellite observations over the Southeast US decrease by 14-23%, implying lower NO\textsubscript{x} emissions for a given column amount.

rsilvern@g.harvard.edu