Inconsistency of ammonium-sulfate aerosol ratios with thermodynamic models in the eastern US: a possible role of organic aerosol

Rachel Silvern
AGU Fall Meeting
December 15, 2016

with Daniel Jacob1, Patrick Kim1, Eloise Marais1, Jay Turner2, Jose Jimenez3, and Pedro Campuzano-Jost3

1Harvard University | 2Washington University, St. Louis | 3University of Colorado Boulder

Atmospheric Chemistry and Physics Discussions, doi: 10.5194/acp-2016-315, 2016

Great Smoky Mountains National Park, Southeast US
Sulfate aerosol forms from emissions of SO_2 and ammonia following thermodynamics

Coal combustion

$\text{SO}_2 \rightarrow \text{H}_2\text{SO}_4 \rightarrow \text{HSO}_4^- \rightarrow \text{SO}_4^{2-}$

Fertilizer & livestock

Ammonia excess

$\text{NH}_3 \rightarrow \text{NH}_3(aq) \rightarrow \text{NH}_4^+ \rightarrow \text{NH}_x$

Combustion

Ammonia deficit

$\text{NO}_x \rightarrow \text{HNO}_3 \rightarrow \text{HNO}_3(aq) \rightarrow \text{NH}_3(aq)$

Thermodynamic models predict the ammonium-sulfate aerosol ratio approaches 2 mol mol$^{-1}$ when ammonia is in excess

$\text{NH}_3(g), \mu g \text{ m}^{-3}$

$\text{NH}_3(aq)$

Ammonium-sulfate aerosol ratio

$[\text{NH}_4^+]/[\text{S(VI)}]$, mol mol$^{-1}$
Surface observations in the eastern US summer show that excess ammonia is available. Data: EPA NEI & MASAGE. A low observed ammonium-sulfate aerosol ratios despite the presence of excess ammonia.
Surface observations in the Southeast US do not follow thermodynamic predictions.

Collocated Observations

Observed ammonium-sulfate aerosol ratios are not sensitive to increasing wet deposition ratio.
Long-term trends in observations show further departure from thermodynamic predictions

Averages for Southeast US summer 2003-2013

Wet Deposition Fluxes (kg ha\(^{-1}\))

CSN Aerosol Concentrations (\(\mu g \text{ m}^{-3}\))

Sulfate

-6.1% \(a^{-1}\)

-8.0% \(a^{-1}\)

Ammonium

no trend

-8.5% \(a^{-1}\)

Ammonium-sulfate Ratio

\([\text{NH}_4^+]/[\text{S(VI)}]\) (mol mol\(^{-1}\))

+5.8% \(a^{-1}\)

-3.0% \(a^{-1}\)

Year

-8.5% \(a^{-1}\)

Ammonium-sulfate aerosol ratio decreasing despite increasing relative supply of ammonia
Uptake of ammonia by sulfate aerosol may be affected by mixing with organic aerosol (OA).

OA now present in excess of sulfate in Southeast US

- Dust
- Black Carbon
- Nitrate
- Ammonium
- Sulfate

Mean aerosol composition, summer 2013

Phase separation observed in laboratory and field

- Organic aerosol coating
- Inorganic core \((\text{NH}_4^+, \text{SO}_4^{2-})\)

You et al., 2012

OA increasing relative to sulfate

SEARCH OA/S(VI) Aerosol Ratio \((\text{g g}^{-1})\)

- Year: '03, '06, '09, '12
- OA/S(VI) increasing by +9.8% a\(^{-1}\)

Laboratory evidence for delayed uptake of ammonia due to OA

- \(y = 5 \times 10^{-4}\)

Liggio et al., 2011
GEOS-Chem simulations of Southeast US summer 2013 – 0.25°×0.3125° resolution, detailed oxidant-aerosol chemistry

GEOS-Chem can reproduce sulfate and OA surface observations

Model overestimates aerosol ammonium compared to aircraft observations

Data: AMS, Jose Jimenez

Sulfate

Organic Carbon

Implement kinetic limitation for uptake of ammonia

Net uptake Local Equilibrium

\[
\frac{d[NH_4^+]}{dt} = k([NH_3(g)] - [NH_3(g)]_{eq})
\]

\(\gamma\) from Liggio et al., 2011
Kinetic limitation improves agreement of modeled and observed ammonium-sulfate ratios

GEOS-Chem Aerosol Ratio

Standard model
Kinetic limitation

[\text{NH}_4^+] / [\text{S(VI)}], \text{mol mol}^{-1}

Gas-phase ammonia

Kinetic limitation captures low observed ammonium-sulfate aerosol ratios and reproduces observed ammonia without significant bias in the Southeast US
Conclusions and implications

• Observations show low ammonium-sulfate aerosol ratios despite excess ammonia, at odds with thermodynamic models

• Despite declining SO$_2$ emissions and constant ammonia emissions, the ammonium-sulfate aerosol ratio decreased from 2003-2013

• Southeast US aerosol has transformed from being sulfate-dominated to OA-dominated over the same time period

• Implementation of a simple kinetic mass transfer limitation for ammonia uptake to sulfate aerosol better reproduces observed ammonium-sulfate aerosol ratios and ammonia

• The co-benefit of SO$_2$ emission reductions for suppressing secondary organic aerosol formation may not be as large as previously thought if aerosol acidity is increasing

• A mass transfer limitation may also have implications for the partitioning of semi-volatile species such as nitrate as well as water