NO$_X$ emissions, isoprene oxidation pathways, and implications for surface ozone in the Southeast United States

Katherine (Katie) Travis
CMAS 2016: 10/26/16

This work was supported by the NASA Earth Science Division and by STAR Fellowship Assistance Agreement no. 91761601-0 awarded by the US Environmental Protection Agency (EPA). It has not been formally reviewed by EPA. The views expressed in this presentation are solely those of the authors.
The Southeast US Is One of the Most Difficult Regions to Model for Surface Ozone

Blame has included isoprene chemistry, isoprene emissions, dry deposition etc.
SEAC⁴RS (Aug-Sep 2013) Provided an Unprecedented Dataset to Investigate Air Quality in the Southeast US

- **Data Used for this Study Include:**
 - Thomas Ryerson, NOAA: NOₓ, NO, NO₂, O₃
 - Ron Cohen, Berkeley: NO₂
 - Paul Wennberg, Caltech: isoprene oxidation products
 - Jack Dibb, UNH: HNO₃
 - Sam Hall, NCAR: J-values
GEOS-Chem Incorporates State-of-the-Science Understanding of O₃-NOₓ-VOC Chemistry

- 0.25°x0.3125° resolution over North America.

- **Emissions:**
 - Biogenic from MEGAN (Guenther et al., 2012).
 - See Zhu et al, 2016 (ACP D)
 - Lightning NOₓ according to Murray et al. (2012).
 - Anthropogenic emissions from EPA’s NEI 2011v1.

- **Chemistry:**
 - Chemistry from Mao et al. (2013).
 - With bromine chemistry (Parrella et al., 2012).
 - Improved treatment of low- and high- NOₓ pathways to incorporate recent lab studies.

- **Physical processes:**
 - Faster deposition of isoprene oxidation products (Nguyen et al, 2015).
NO$_x$ and Ozone are Overestimated in the Original GEOS-Chem Simulation

PBL is 60% too high for NO$_x$ and 12ppb too high for ozone.

SEAC4RS PI
Jack Dibb: HNO$_3$, Thomas Ryerson: O$_3$, NO, NO$_2$
Reducing NEI11v1 by 50% Improves Agreement with SEAC4RS NO$_y$ and O$_3$

- Many studies find that NEI mobile NO$_x$ is overestimated –

 - We scale NEI11v1 by 50% by reducing industry and mobile NO$_x$ by 60%.
NOx and O3 Concentrations Below 1.5 km

Spatial Variability Shows No Significant Biases

Mean model bias for ozone is +2 ppb, 9% for NOx

Thomas Ryerson: O3, NO, NO2
Simulation with Scaled NO_x Successfully Captures Isoprene Oxidation Pathways From SEAC4RS

‘High NOx pathway’

See Fisher et al, 2016 (ACP) for more on ISOPN
Reductions in NO\textsubscript{x} Have a Smaller Impact Due to Spatial Segregation of Emissions

More details in:
Yu, K. et al, ACP (2016)
We Add New Constraints on NO\textsubscript{x} Using Measurements of Deposition

\[
\text{NO}_2 + \text{OH} + \text{M} \rightarrow \text{HNO}_3
\]

\[\text{NO}_x = \text{NO} + \text{NO}_2\]

Very soluble
\[\text{H}^+, \text{NO}_3^-\]

"What Goes Up Must Come Down"

Dry deposition of HNO\textsubscript{3}

Wet deposition of NO\textsubscript{3}^-

Measured during Southern Oxidant and Aerosol Study June-July 2013

Measured by the National Atmospheric Deposition Program
Wet Deposition Supports National Scaling of NEI11

US Nitrate Wet Deposition
August-September 2013

Southeast US: Bias = 8%, r=0.71
CONUS: Bias =7%, r = 0.76
Ozone Production Efficiency (OPE) Provides Constraint on Efficiency of Ozone Formation

Without scaling, OPE = 14.7 which means ozone would be produced less efficiently than observed.
How well can we constrain US NO\textsubscript{x} emissions with OMI NO\textsubscript{2}?

OMI NO\textsubscript{2} (BEHR)

OMI NO\textsubscript{2} (NASA v2.1)

GEOS-Chem with reduced NO\textsubscript{x} emissions
-18% vs. BEHR
-11% vs. NASA

Aug-Sep 2013 data with GEOS-Chem shape factors

Low bias in GEOS-Chem is due to upper troposphere, not surface emissions

With original NEI emissions, Bias = +26-31%
Free/upper troposphere makes major contribution to OMI NO\textsubscript{2} tropospheric column in summer

- GEOS-Chem low bias in upper troposphere is caused by NO/NO\textsubscript{2} chemistry; insufficient convection of HO\textsubscript{x} precursors HCHO and CH\textsubscript{3}OOH?

\[\text{NO} \underset{\text{O}_3, \text{HO}_2, \text{RO}_2}{\overset{h\nu}{\longrightarrow}} \text{NO}_2 \]

- Current OMI retrievals may have large AMF errors

Mean SEAC4RS NO\textsubscript{2} profiles

- 25-40% of column

Mean NO/NO\textsubscript{2} ratio

- 65-80% of column

Observed (NOAA + UC Berkeley)

- GEOS-Chem
- NO-NO\textsubscript{2}-O\textsubscript{3} Equilibrium (PSS)
- Double HO\textsubscript{2} and RO\textsubscript{2} Above 8km

SEAC4RS PI
- Thomas Ryerson: NO\textsubscript{2}
- Ron Cohen: NO\textsubscript{2}
Discrepancy Remains Between Surface & Upper PBL O_3

- Remaining uncertainties are potential O_3 sinks and boundary layer mixing.
Conclusions

• NEI11v1 for NO\textsubscript{x} is biased high across the US by as much as a factor of 2.
• Emissions from industrial and mobile sources must be 30-60\% lower than NEI values.
• Evidence for this comes from (1) SEAC4RS observations of NO\textsubscript{x} and its oxidation products, (2) NADP network observations of nitrate wet deposition fluxes.
• The OPE in the boundary layer is well reproduced.
• There may be large errors in satellite NO\textsubscript{2} columns due to the presence of upper tropospheric NO\textsubscript{2}. Observations show departure from photochemical steady-state.
• MDA8 surface ozone is still biased against the CASTNET observations by approximately 8ppb.

ktravis@fas.harvard.edu

Additional Papers from SEAC4RS

- **Model Resolution**: Yu, K. et al.: Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions, *Atmos. Chem. Phys.*, 16, 4369–4378, doi:10.5194/acp-16-4369-2016, 2016