Global budget of black carbon: constraints from HIPPO

Qiaoqiao Wang, Daniel Jacob, Ryan Spackman, Joshua Schwarz and HIPPO science team
HIPPO Science Meeting, Mar 12th, 2012

Research funded by NSF
Multimodel intercomparisons and comparisons to observations

- Models differ by order of magnitude, do not reproduce observed gradients
- Differences reflect treatment in scavenging
Global BC simulation in GEOS-Chem

- 2°x2.5° resolution, 47 vertical levels, GEOS-5 meteorological data
- Anthropogenic and biomass burning (GFED3) emissions w/monthly resolution (aircraft emissions are not included yet)

BC emissions in 2009

Anthropogenic (4.9 Tg a\(^{-1}\))

Open fires (1.6 Tg a\(^{-1}\))

- Anthropogenic emission dominates globally, biomass burning may dominate regionally and seasonally
- Anthropogenic emissions previously evaluated with surface networks in US, Europe, East Asia; error is ± 40%
BC removal in GEOS-Chem

- Cloud updraft scavenging
- Anvil precipitation
- Large scale precipitation
- In-cloud
 - IN/CCN
 - IN
 - IN/CCN

- Below-cloud
 - washout: for all BC
 - re-evaporation

- BC removal is mainly by wet deposition with hydrophobic/hydrophilic distinction
- Scavenging scheme previously evaluated with aerosol surface/aircraft observations
- Use HIPPO to evaluate sensitivity to impaction scavenging, CCN/IN assumptions, cirrus precipitation
Previous application to Arctic spring (ARCTAS)

- Model was unbiased in reproducing vertical profiles, deposition to snow
- HIPPO provides far more extensive test of model scavenging and implications for global transport

[Wang et al., 2011]
Using HIPPO data to test/improve BC removal in GEOS-Chem

- How reliable are the observations of BC < 0.1 ng m⁻³?
Observed vs. model curtains for HIPPO BC (West Pacific)

- data averaged over the model grid
Probability density function for BC

0-20° N 60-90° N 0-20° S

Jan > 6km Mar-Apr > 6km Jan > 6km

<table>
<thead>
<tr>
<th>Observation</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>10</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

- generally lognormal distribution
- model reproduced the spread
- low tail in the observations but missed in the model

log BC (ng m⁻³)
Comparison of vertical profiles

vertical gradients
- decrease with altitudes by orders of magnitude

seasonality
- higher concentrations in spring in both NH and SH
Normalized mean bias ($\text{NMB} = \Sigma (M_i - O_i) / \Sigma O_i$)
-14% in all (-10% in Jan; 10% in Oct-Nov; -25% in Mar-Apr)
• Anthropogenic influence dominates in both NH and SH, consistent with the observed high correlation between CO and CH2Cl2.

• Open fire emissions important in spring.
Zonal mean BC in GEOS-Chem ‘educated by HIPPO’

Global tropospheric BC lifetime in model is 4-5 days depending on season