Validation of TES Methane with HIPPO Observations

For Application to Adjoint Inverse Modeling of Methane Sources

HIPPO Science Team Meeting
Boulder, CO

18 March 2011

Kevin J. Wecht, DJ Jacob, SC Wofsy, EA Kort, JR Worden, SS Kulawik, VH Payne, A Eldering, GB Osterman
Adjoint Inverse Modeling of Methane Sources

HIPPO QCLS Methane (Kort, Daube, Wofsy) provides:
- Large number of profiles
- Wide latitudinal coverage
- Remote from sources (reduces colocation error)

GEOS-Chem CTM

GEOS-Chem Adjoint

TES Methane (Worden, Kulawik)

Adjoint inverse analysis

OPTIMIZATION OF SOURCES
TES Methane

- Thermal IR, sun-synchronous orbit
- Observations since Sept 2004
- One global survey (GS) = 16 orbits, 26 h
- One 5x8 km² observation every 182 km
- 15-16 GS each month

V004

- Methane retrieval 7.658 – 7.740 μm
- Degrees of Freedom for Signal 0.6-1.6
- Averaging kernels peak 200-400 hPa

VNEW

- Expanded window, N₂O correction
- Degrees of Freedom for Signal 1.0-2.0
- Averaging kernels peak 200 & 500 hPa

Rows of Averaging Kernel

- **Pressure**
- **DOFS = 1.54**
- RTVMR

Rows of Averaging Kernel

- **Pressure**
- **DOFS = 1.99**
- RTVMR-lo
- RTVMR-hi
The Benefits of HIPPO Methane

- HIPPO I & II only
- QCLS error << TES error
- Many, high profiles
- Latitudinal coverage
- Remote from local methane sources
- Dominant variability with latitude
- Little vertical variability
- Apply TES operator & RTVMR

HIPPO I Southbound interpolated methane

![Map and graph showing HIPPO I and HIPPO II routes and methane data](image)
Using HIPPO and TES V004 to Define Coincidence Criteria

Validation characterizes mean bias and residual error. Residual error contains contributions from:
1) error in the retrieval
2) colocation error

Coincidence requirements of ±750 km, ±24 h are sufficient. Consistent with remote Pacific.
Positive bias and significant noise, but latitudinal gradient roughly captured. Bias and error appear constant with latitude. Error larger than self-reported!
Bias and error reduced compared with V004 methane. RTVMR-hi bias is a function of latitude.
The Ability of TES V004 to Capture Latitudinal Gradients

TES V004 captures HIPPO lat. gradients on a scale of ~20°. Informative for inverse modeling.
Model Comparison – NOAA GMD
2008 Annual Average

• GEOS-Chem provides good simulation in the annual average
• Missing northern hemisphere sources?

TES provides far greater spatial and temporal coverage than NOAA GMD
VNEW reveals information not captured by V004.
Old TES CH$_4$ - Most recent public release

- TES is biased high and residual instrument error is > self-reported range
- Colocation error in VOLD validation is negligible
- TES captures latitudinal gradient in HIPPO data at ~20° resolution
- Enabling Inverse Modeling:
 - Characterization of bias and error
 - Robust latitudinal gradient with greater coverage than surface stations

New TES CH$_4$

- Sensitivity lower in troposphere (important for inverse modeling)
- Error < old TES CH$_4$

Future Work

- **Validation of TES over source region**
- Adjoint Inversion with new TES CH$_4$
- Combine with total column measurement (SCIAMACHY, GOSAT)
- Focus on N.A. with GEOS-Chem nested-grid capability