Modelled and Observed Atmospheric-Temperate Exchange of Hg in a Temperate Hardwood Forest

Hannah M. Horowitz (hhorow@fas.harvard.edu), Elizabeth S. Corbitt, Robert W. Talbot, Helen M. Amos, and Elise M. Sunderland
1. Harvard University; 2. University of Houston; 3. SUNY - ESF

Goals
- To quantify the nightly dry deposition velocity of Hg and the importance of terrestrial deposition and exchange of Hg to the global Hg budget, using long-term atmospheric observations at a rural, forested site.
- To understand dew uptake of Hg and the relationship of leaf dew to nocturnal deposition.
- To examine driving physical factors in the diurnal and seasonal variability of atmospheric Hg at background sites.
- To improve modelled diurnal cycles of atmospheric Hg.

Introduction
Nocturnal deposition of Hg to the terrestrial surface, is a significant sink of Hg, especially during the growing season, with an avg. nighttime \(V_D \) of 0.2 cm s\(^{-1} \) and up to ~3.4 \(\mu \)g m\(^{-2} \) of foliar accumulation at Thompson Farm, NH.

Background

\section*{Nocturnal Depletion Mechanisms}
-
- Warm-season nocturnal Hg\(_0\) deposition is due to dry deposition.
- Nighttime Hg\(_0\) deposition by
- Concurrent Hg\(_0\) and O\(_3\) building point to the formation of a nocturnal inversion layer preventing replenishment.
- We do not observe significant systematic error in our instrument as has been noted in other studies.
- DEPs begin before high-humidity (ideal RH), and also increases under high RH.

\section*{Leaf Exchange}

- Nighttime anthropogenic Hg\(_0\) deposition is reduced during precipitation.
- Leaf wetness and dew uptake

\section*{Results: Nocturnal Hg\(_0\) Deposition and Dry Deposition Velocity}

\begin{itemize}
 \item Yearly and monthly averaged \(V_D \) and Hg\(_0\) deposition were calculated during
 \item windspeed is minimized in July/August, no inversion strength and thus aerodynamic resistance are minimized.
 \item The emphasis of the nocturnal inversion layer, and windspeed follows length of nights.
 \item Max. deposition and \(V_D \) occur in September.
 \item Average \(V_D \) is 0.1-0.7 cm s\(^{-1} \) for background sites.
 \item Nocturnal Hg\(_0\) deposition: 0 \(\mu \)g m\(^{-2} \) of foliar accumulation at Thompson Farm, NH.
\end{itemize}

Acknowledgements

Funding received in 2010 from Harvard Forest Research Program Grant for support of the Environmental Individual Grant Center for the Environment.

References