Chemical sources and sinks of Hg(II) in the remote atmospheric marine boundary layer

Christopher D. Holmes
Daniel J. Jacob
Department of Earth & Planetary Sciences
Harvard University

Robert P. Mason
Department of Marine Sciences
University of Connecticut

Dan Jaffe
Interdisciplinary Arts and Sciences Department
University of Washington
Hg-halogen chemistry

Simultaneous O₃ and Hg⁰ depletion event

Spitzbergen

Hg⁰ lifetime for April

Global lifetime due to Hg-Br reaction:

\[\tau_{\text{Hg}^0} = 200 \text{ d} \quad \text{(range: 160 – 510 d)} \]

Gas-phase reaction mechanism

\[\begin{align*}
Hg^0 & \overset{k_1}{\rightarrow} Br \\
& \overset{k_2}{\rightarrow} HgBr \\
HgBr & \overset{k_3}{\rightarrow} Br, OH, ... \\
HgBrX & \end{align*} \]
Rapid MBL cycling?

Atmosphere

Marine Boundary Layer

River

Dry Particle + 9.7

Net Evasion 7.3

HgII 5.7

Hg0 13

HgII 1.3

Mason and Sheu, 2002

RGM-O\textsubscript{3} Anticorrelation

Max. daily RGM, pg m3

Ozone, ppbv

- Atlantic Subtropics
- Pacific Subtropics
- Pacific Midlatitudes
- Okinawa

following Laurier and Mason, 2007
RGM diurnal cycles - regular features

Major features
- Fast morning rise
- Peak 11:00-13:00 LT
- Fast decline in afternoon
- No significant change 20:00-4:00 LT
- Amplitudes 1-3X mean

Data from Laurier et al., 2004
Jaffe et al., 2005
Laurier and Mason, 2007
Sources and sinks of Hg(II) in the marine boundary layer

Free troposphere

Marine boundary layer

Hg⁰ → Hg(II) → MeHg → Hg(p)

O₃, OH, Br, Cl

aq. photoreduction

Dry & Wet Deposition

Sea salt aerosol

Entrainment

\[
\frac{d[RGM]_{MBL}}{dt} = P - L + \frac{F_{\text{entrain}}}{Z_{MBL}} - \frac{F_{\text{dep}}}{Z_{MBL}}
\]

\[
F_{\text{entrain}} = \rho_{\text{entrain}} ([RGM]_{FT} - [RGM]_{MBL})
\]

\[
F_{\text{dep}} = [RGM]_{MBL} \left(\nu_{\text{dry}}(u) + H F_{\text{ss}}(u) \right)
\]

Holmes et al., in prep.
Sources and sinks of Hg(II) in the marine boundary layer

\[\frac{d[RGM]_{MBL}}{dt} = P - L + \frac{F_{\text{entrain}}}{Z_{MBL}} - \frac{F_{\text{dep}}}{Z_{MBL}} \]

\[F_{\text{entrain}} = v_{\text{entrain}} ([RGM]_{FT} - [RGM]_{MBL}) \]

\[F_{\text{dep}} = [RGM]_{MBL} (v_{\text{dry}}(u) + H' F_{\text{ss}}(u)) \]

Holmes et al., in prep.
Site-specific simulations

Holmes et al., in prep.

\[\tau_{\text{Hg}(II)} = 6.5 \text{ h} \]

\[\tau_{\text{Hg}(II)} = 8.1 \text{ h} \]

\[\tau_{\text{Hg}(II)} = 2.6 \text{ h} \]

\[\tau_{\text{Hg}(II)} = 0.7 \text{ h} \]
RGM Budget

\[\tau_{Hg(II)} = 8.1 \text{ h} \]
\[\tau_{Hg^0, \text{chem.}} = 100 \text{ d} \]

\[\tau_{Hg(II)} = 6.5 \text{ h} \]
\[\tau_{Hg^0, \text{chem.}} = 127 \text{ d} \]

\[\tau_{Hg(II)} = 2.6 \text{ h} \]
\[\tau_{Hg^0, \text{chem.}} = 86 \text{ d} \]

\[\tau_{\text{air, entrain}} = 28 \text{ h} \]

Holmes et al., in prep.
Conclusions and Implications

- Loss of RGM at numerous MBL sites is controlled by wind-driven sea salt aerosols.
- Hg+Br supplies 20-40% of MBL RGM in the midlatitudes and subtropics.
- Hg+Cl contributes less than 1% of RGM.
- Entrainment supplies 30-50% of MBL RGM.
- ~1% of marine Hg⁰ emissions are immediately oxidized in the MBL vs. 40% suggested by Mason and Sheu (2002).
- Hg(II) deposition should be fastest in high-latitude storm tracks.

Funding Source:
EPA STAR

Holmes et al., in prep.