Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California

Western Pacific AGU
August 19, 2004

This research was funded by the NOAA Office of Global Programs
Intercontinental Transport and Chemical Transformation (ITCT-2K2) and Pacific Exploration of Asian Continental Emissions (PEACE-B): Overview

1) PEACE-B and ITCT-2K2 aircraft campaigns: April - May 2002

2) GEOS-CHEM, global 3-D model of tropospheric chemistry
3) MOPITT CO to track pollution across the Pacific

Our motivation: Examine the ozone production in transpacific Asian pollution plumes, and the implications for ozone air quality in California
GEOS-CHEM vs. PEACE-B:

Comparison along the flight tracks

LEGEND

- Data > 30 N
- Observations are averaged over model grid

- Observed: Solid
- Simulated: Dashed Red
- Asian FF: Dashed Green
- Asian BB: Dashed Blue

CO: Strong BL outflow
Secondary buldge above 5 km (WCB)

NOy: Strong BL outflow
No secondary buldge (HNO3 scavenged)

Prior estimates suggest 10 - 15% NOx exported as NOy, of which ~50% is exported as PAN
[Koike et al, 2003; Miyazaki et al., 2003]
NOAA ITCT-2K2: April-May 2002, Monterey Bay, CA

Major Asian pollution plumes

Primarily anthropogenic
Very different transport pathways

MAY 5

- CO
- PAN

MAY 17

- O3
- HNO3

May 5th
5-8 km
High CO,
Moderate ozone enhancement
High PAN

May 17th
2-4 km
High CO, Large Ozone enhancement
PAN → NOx → HNO3

Observational Estimate: 17 ppbv ozone produced from 320 pptv PAN
Ozone production efficiency per unit NOx consumed (OPE) ~50
PAN driven ozone production in subsiding transpacific pollution plumes

Ozone Production Efficiency May 2002 (2–4km mean)

Stratospheric downwelling

Warm Conveyor Belt
10-15% NOx exported as NOy

PAN, moderate ozone enhancement

Subsidence

PAN → NOx → HNO3

OPE ~ 60–80

strong ozone enh. into dry region with strong insolation

NOx → HNO3

OPE ~ 5

PAN

Asia

U.S.
Asian contribution to Trinidad Head timeseries = 6 +/- 2 ppbv of total Ozone.

Why no plumes?

Analogy to dust: Aircraft and surface observations show an order of magnitude dilution between surface and free troposphere.

20 ppbv enhancement aloft is only a 2 ppbv enhancement at the surface
California mountain sites are particularly sensitive to Asian Ozone pollution:

Observed 8-h ozone at Sequoia National Park (1800 m) in May 2002 vs. corresponding simulated (GEOS-CHEM) Asian pollution ozone enhancement.

May 17 obs. Asian plume event in red

Asian enhancements are 6-10 ppbv during NAAQS exceedances; unlike at surface sites, Asian pollution influence is not minimum under high-ozone conditions!