Trends in tropospheric NO$_2$ columns over Europe and the effect of the economic crisis observed from the Ozone Monitoring Instrument

K.F. Boersma1,2, P. Castellanos2, G.C.M. Vinken1

1. Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
2. Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE De Bilt, The Netherlands

European NO$_2$ emissions 2005-2010

The EMEP CEIP "expert emissions inventory" reports NO$_2$ emissions reductions of 5-40% between 2005 and 2010. The Table below lists estimated trends in NO$_2$ emissions for a number of northwest European countries. The reductions mostly reflect stricter motor vehicle standards with diminishing returns imposed by the European Union (Euro 4&5, and Euro IV &V emission standards).

<table>
<thead>
<tr>
<th>Country</th>
<th>EMEP CEIP Trend (2005-2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>-4.5 %/yr</td>
</tr>
<tr>
<td>France</td>
<td>-2.6 %/yr</td>
</tr>
<tr>
<td>Germany</td>
<td>-3.2 %/yr</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-1.0 %/yr</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>-6.3 %/yr</td>
</tr>
</tbody>
</table>

Ground-based monitoring networks in northwestern Europe also observe reductions in NO$_2$ concentrations but urban NO$_2$ levels do not follow the NO$_2$ reductions. This could be due to:

- A shift towards higher NO$_2$/NO ratios in NO$_2$ emissions, because of increasing numbers of diesel vehicles [Carslaw, 2005].
- Increases in the urban background ozone, favouring NO$_2$ over NO. Especially close to strong sources [Keuken, 2009].

Because of these difficulties, and because monitoring trends with ground-based instruments is difficult given the considerable differences in spatial representativity between ‘background’, ‘sub-urban’, and ‘urban’ stations, we turn to satellite retrievals. Satellite measurements cover all of Europe, use one consistent retrieval method, and provide excellent spatial representativity.

Kolmogorov-Zurbenko filtering of OMI NO$_2$ data

Here we use DOMINO v1.02 data [Boersma et al., 2007] between October 2004 and December 2010. Only measurements with cloud radiance fractions ≤ 50% have been selected, and pixels affected by the row anomaly (rows 27-44 and 53-54) were excluded for the entire 2004-2010 time period.

The Kolmogorov-Zurbenko filtering removes high-frequency variability (weekly cycle, seasonal variability), while retaining the long-term trend in tropospheric NO$_2$.

\[
\text{Smoothened OMI NO}_2 = \frac{1}{m^2} \sum_{i=-(m-1)/2}^{(m-1)/2} \text{Original, daily OMI NO}_2 \text{column}
\]

We use \(m = 365 \) days and apply the filtering twice, thus suppressing all variability with a period < 1.4 yr.

The Figure below shows the KZ-filtered average OMI NO$_2$ column over Europe for August 2005 (upper left panel), plus the differences between subsequent years and 2005. Blue colors indicate relative reductions, red increases.

KZ-filtered NO$_2$ above Amsterdam as a function of days since 1 January 2005:

- Decrease in NO$_2$ emissions for seasonal cycle in NO$_2$.
- Strong reductions after 2007 in northwestern Spain associated with DeNox installation at local power plants.

Some conclusions:

- NO$_2$ concentrations over Europe decrease continuously during 2005-2010.
- Reductions in NO$_2$ emissions or meteorology/photocemistry? What happened at day 1500 (late 2008)?

Reductions in OMI NO$_2$ over Amsterdam

We test our approach for two scenarios. In scenario A we assume a constant NO$_2$ emission change rate, and in scenario B we use an acceleration of the emissions change rate in October 2008 and a deceleration in March 2010 to capture the effects of the economic crisis.

Scenario B matches the observed NO$_2$ change rate best. Preliminary results indicate that our regression model captures 72% (scenario A: 21%) of the observed variability, and that interannual changes in temperature and precipitation explain 15% of the observed NO$_2$ change rate. Over Amsterdam, NO$_2$ decreased at -2%/yr, but during the 2008-2009 crisis, the rate of decrease was as high as -7%/yr. We find similar results for Rotterdam and the nearby Ruhr Area in Germany.

References

Keuken, M. M. Rozema, and S. van den Brink: Trends analysis of urban NO$_2$ concentrations and the importance of direct NO$_x$ emissions versus source NO$_x$ equilibrium, Atmos. Environ., 42, 4793-4801, 2008.