Using satellite data in joint CO$_2$-CO inversion to improve CO$_2$ flux estimates

Helen Wang1,4, Daniel J. Jacob1, Monika Kopacz1, Dylan B.A. Jones2, Parvadha Suntharalingam3, Jenny A. Fisher1

1. Harvard University
2. University of Toronto
3. University of East Anglia
4. Harvard-Smithsonian Center For Astrophysics

Submitted to ACP
Why $\text{CO}_2 : \text{CO}$?

- CO and CO_2 share common combustion sources and transport, indicating cross correlation in concentration and error.
- CO has stronger gradient, is more sensitive to transport error, can provide additional constraint.
- CO is relatively easy to measure from space; Multiple validated data sets have been used for CO source inversion.
- Joint $\text{CO} – \text{CO}_2$ inversion using aircraft data in Asian outflow showed substantial improvement over $\text{CO}_2 –$ only inversion.

[Palmer et al., 2006]
Joint CO$_2$ – CO inversion

Observation Vector:
- Column concentration

State Vector:
- Sources

Cost function

\[J(x) = (y - Kx)^T S_{\Sigma}^{-1} (y - Kx) + (x - x_a)^T S_a^{-1} (x - x_a) \]

Observational error covariance

A priori error covariance

Coupling between CO$_2$ and CO occurs through off-diagonal elements in error covariance matrices S

\[
S = \begin{pmatrix}
S_{CO} & \text{cov}(\varepsilon_{CO}, \varepsilon_{CO_2}) \\
\text{cov}(\varepsilon_{co}, \varepsilon_{co_2}) & S_{CO_2}
\end{pmatrix}
\]

\[
\text{cov}(\varepsilon_{co}, \varepsilon_{co_2}) = r \sqrt{\text{var}(\varepsilon_{co})} \sqrt{\text{var}(\varepsilon_{co_2})}
\]

Correlation coefficient

- Off diagonal elements increase information content
- Negligible correlation in S_a due to CO emission factor uncertainty
Components of observational error

\[\mathcal{E}_\Sigma = \mathcal{E}_I + \mathcal{E}_R + \mathcal{E}_M \]

- Observational error
- Instrument error
- Representation error

Model error
- dominant
- important

Covariance structure comes from the model error
Calculating model transport error correlation r_M

1. Paired model: GEOS4 – GEOS5
 (same meteorological year, same sources/sinks)

The same can be performed for GEOS3 – GEOS4 pair
Model error correlation 1:30 PM, no averaging kernel

Large scale error correlation patterns are robust

Error correlation is different from concentration correlation
2. Model error correlation from paired forecast (NMC) method

GEOS5 ARCTAS 48h – 24h forecast of column CO and CO$_2$

July 2008

the same large scale pattern as before
Analytical inversion results for Europe with globally **uniform** model error correlation and no instrument or representation errors

- Substantial improvements when $\Gamma_M > 0.6$

A posteriori CO₂ flux uncertainty

- 14 days of pseudo column CO and CO₂ data from GEOS-Chem 2x2.5 simulation sampled from A-train orbit
- With OCO-like averaging kernels for column CO and CO₂
- Substantial improvements when $\Gamma_M > 0.6$
Results with **model error correlation map** and no instrument or representation errors

Combustion Biosphere

Dec 2005

July 2005

15 - 55% improvements in a posteriori CO₂ flux in winter
10 - 30% improvements in summer

Importance of decreasing $\mathcal{E}_I + \mathcal{E}_R - \mathcal{E}_M$