New insights in isoprene photooxidation: from chamber studies to global model

Fabien Paulot

Environmental Science & Engineering
Caltech
Introduction

Five carbons, two double bonds, thousands of papers and yet ...
Introduction

Five carbons, two double bonds, thousands of papers and yet ...

Emissions : bottom-up and top-down inventories but the biological mechanism remains uncertain
Introduction

Five carbons, two double bonds, thousands of papers and yet ...

Emissions: bottom-up and top-down inventories but the biological mechanism remains uncertain

Chemical mechanism:

- High NO$_x$: problems with organic nitrates, small carboxylic acid formation ...
- Low NO$_x$: very poor understanding due to experimental challenges
- Aerosol: what are the gas-phase precursors of isoprene-originating aerosols
Introduction

Five carbons, two double bonds, thousands of papers and yet ...

Emissions: bottom-up and top-down inventories but the biological mechanism remains uncertain

Chemical mechanism:

- High NO$_x$: problems with organic nitrates, small carboxylic acid formation ...
- Low NO$_x$: very poor understanding due to experimental challenges
- Aerosol: what are the gas-phase precursors of isoprene-originating aerosols

Climate change: CO$_2$ vs Temperature influence
Introduction

Five carbons, two double bonds, thousands of papers and yet ...

Emissions: bottom-up and top-down inventories but the biological mechanism remains uncertain

Chemical mechanism:

- **High NO\textsubscript{x}**: problems with organic nitrates, small carboxylic acid formation ...
- **Low NO\textsubscript{x}**: very poor understanding due to experimental challenges
- **Aerosol**: what are the gas-phase precursors of isoprene-originating aerosols

Climate change: CO\textsubscript{2} vs Temperature influence

Unfortunately, everything is intermingled: isoprene still accounts for a very large fraction of the uncertainty in atmospheric chemistry (past-present-future)
Introduction

Five carbons, two double bonds, thousands of papers and yet ...

Emissions: bottom-up and top-down inventories but the biological mechanism remains uncertain

Chemical mechanism:

- **High NO$_x$**: problems with organic nitrates, small carboxylic acid formation ...
- **Low NO$_x$**: very poor understanding due to experimental challenges
- **Aerosol**: what are the gas-phase precursors of isoprene-originating aerosols

Climate change: CO$_2$ vs Temperature influence
Outline

1. Chamber studies

2. GEOS-Chem
Chamber studies GEOS-Chem Framework

Isoprene 100 ppb

NO 500 ppb

H_2O_2 2.2 ppm

RH $< 5\%$

\[\text{VOC}_1(t) \ldots \text{VOC}_n(t) \]

\[\text{CF}_3\text{O}^- \]

\[\text{VOC}.\text{CF}_3\text{O}^- \]

\[\text{VOC}.\text{H}.\text{HF} + \text{CF}_2\text{O} \]

Cluster $m/z + 85$

Transfer $m/z + 19$

$H\psi$

Dipole Polarizability

Su's Model

Near-explicit Kinetic Model

From the comparison model/data derivation of branching ratios rate constants, ...

Calibrated Profile

Experimental calibration for nitric acid

[VOCl]

t

Crounse et al. 2006, Paulot et al. 2009

Fabien Paulot (ESE Caltech) Isoprene photooxidation 4 / 10
Advantages

- Fast and direct measurements of a wide range of VOC (organic nitrates, small carboxylic acids, organic peroxides)
- Measurement of inorganic species: HONO, HO$_2$NO$_2$, H$_2$O$_2$, HNO$_3$, N$_2$O$_5$ (indirect) → strong constraints to derive a mechanism

![Isoprene nitrate](image.png)

Figure: Isoprene nitrate
Major conclusions

- δ hydroxy channel
Major conclusions

- δ hydroxy channel
 - Constraints on $\sim 30\%$ of the carbon
 - Formation of large acids
Major conclusions

- δ hydroxy channel
 - Constraints on $\sim 30\%$ of the carbon
 - Formation of large acids

- Isoprene nitrates
 - Overall yield: $12 \pm 3\%$
 - Large discrepancy between the β ($\sim 6.7\%$) and δ hydroxychannels ($\sim 24\%$)
 - Short-lived (δ-hydroxy isoprene nitrates) with substantial recycling of NO$_x$: need to be included in the mechanism
Major conclusions

- δ hydroxy channel
 - Constraints on $\sim 30\%$ of the carbon
 - Formation of large acids
- Isoprene nitrates
 - Overall yield: $12 \pm 3\%$
 - Large discrepancy between the β ($\sim 6.7\%$) and δ hydroxychannels ($\sim 24\%$)
 - Short-lived (δ-hydroxy isoprene nitrates) with substantial recycling of NO$_x$: need to be included in the mechanism
 - Other nitrates may have a significant role
 - MVK and MACR nitrates are formed with yields exceeding 10%
 - MVK nitrate and propanone nitrate ($\sim 1\%$) are very long-lived

Glycolaldehyde and hydroxyacetone (Butkovskaya 2006)
Major conclusions
Major conclusions

- δ hydroxy channel
 - Constraints on $\sim 30\%$ of the carbon
 - Formation of large acids

- Isoprene nitrates
 - Overall yield: $12 \pm 3\%$
 - Large discrepancy between the β ($\sim 6.7\%$) and δ hydroxy channels ($\sim 24\%$)
 - Short-lived (δ-hydroxy isoprene nitrates) with substantial recycling of NO$_x$: need to be included in the mechanism
 - Other nitrates may have a significant role
 - MVK and MACR nitrates are formed with yields exceeding 10%
 - MVK nitrate and propanone nitrate ($\sim 1\%$) are very long-lived

- Large formation of small carboxylic acid
 - Glycolaldehyde and hydroxyacetone (Butkovskaya 2006)
 - Isoprene nitrates
Major conclusions
Outline

1. Chamber studies
2. GEOS-Chem
Summer NH Isoprene nitrate

Chamber studies

Fabien Paulot (ESE Caltech)
Formic acid Northern Hemisphere summer

Fabien Paulot (ESE Caltech)
Work in progress and acknowledgements

- Low NO\textsubscript{x} chemistry: isoprene (Paulot et al. in review) and atmospheric relevant products: MVK, MACR, MBO, ... (Crounse et al. in preparation)
 - Fate of the peroxides
 - OH recycling

 Current chemical schemes are very wrong over tropical regions (not specific to GEOS-Chem).

- Compare model with CIMS measurements collected during INTEX-B, TC4 and ARCTAS.
Work in progress and acknowledgements

- Low NO\textsubscript{x} chemistry: isoprene (Paulot et al. in review) and atmospheric relevant products: MVK, MACR, MBO, ... (Crounse et al. in preparation)
 - Fate of the peroxides
 - OH recycling

 Current chemical schemes are very wrong over tropical regions (not specific to GEOS-Chem).

- Compare model with CIMS measurements collected during INTEX-B, TC4 and ARCTAS.

John D. Crounse, Henrik G. Kjaergaard (University of Otago, New Zealand), Jesse H. Kroll (now at MIT), John H. Seinfeld, Paul O. Wennberg

NSF, NASA, EPA, Davidow Fellowship, Davidow Fund